DirectX 10 教程11:绘制2D图像
原文地址:Tutorial 11: 2D Rendering(http://www.rastertek.com/dx10tut11.html) 。
源代码:dx10tut11.zip。
绘制2D图像是非常有用的。例如,大多数用户界面,sprite系统和文字引擎都是由2D图像构成的。DirectX 10通过将2D图像映射到多边形和使用正交投影矩阵绘制实现了2D图像的绘制。
2D屏幕坐标
要将2D图像绘制到屏幕上需要计算屏幕的X和Y坐标。DirectX中屏幕中点的坐标为0,0。屏幕左边和下边的坐标为负方向,右边和上边的坐标为正方形。例如屏幕分辨率为1024x768,则边框的坐标如下图所示:
所以,2D绘制需要处理这种屏幕坐标计算,你还需要屏幕大小信息用于将2D图像正确地放置到屏幕上。
在DirectX 10中关闭Z缓存
要绘制2D必须关闭Z缓存。关闭Z缓存后,2D数据就会覆盖在当前像素的顶部。2D绘制使用的是画家算法,从后向前绘制。完成2D图像的绘制后还需要重新打开Z缓存,这样才可以正确地绘制3D图像。
要能开启关闭Z缓存,你需要创建第二个深度模板状态,这个状态与3D场景中使用状态唯一的区别在于DepthEnable设置为false。然后使用OMSetDepthStencilState在两个状态之间切换实现Z缓存的开启和闭合。
动态顶点缓存
还需要介绍的一个新概念是动态顶点缓存。在前面的教程中我们使用的都是静态顶点缓存。静态顶点缓存的特点是你无法修改缓存中的数据,而动态顶点缓存可以让你在需要的时候修改缓存中的数据。动态缓存要比静态缓存慢得多,但可以实现一些特殊的功能。
我在2D绘制中使用动态缓存的原因是我们经常需要将2D图像移动到屏幕的不同位置。例如光标,它经常在移动,因此表示这个位置的顶点数据经常会发生改变。
有两点需要注意。第一,除非你确定需要,否则不要使用动态顶点缓存,它们要比静态缓存慢。第二,不要在每帧重复清除和创建静态缓存,它会锁定显卡(我在ATI显卡上遇到过这种情况,但Nvidia上没有),会比使用动态顶点缓存性能更糟。
DirectX 10中的正交投影
最后一个新概念是使用正交投影矩阵代替常规的3D投影矩阵。这样才能在2D屏幕坐标中进行绘制。我们已经在Direct3D的初始化代码中创建了这个矩阵:
// Create an orthographic projection matrix for 2D rendering. D3DXMatrixOrthoLH(&m_orthoMatrix, (float)screenWidth, (float)screenHeight, screenNear, screenDepth);
框架
本教程基于上一个教程的代码。主要的不同在于ModelClass类被BitmapClass类替代,我们再次使用了TextureShaderClass替换了LightShaderClass。结构如下图所示:
Bitmapclass.h
BitmapClass表示要绘制的2D图像。每个2D图像都需要一个新的BitmapClass对象。注意这个类实际上只是ModelClass的重写,不过处理的是2D图像而不是3D模型。
//////////////////////////////////////////////////////////////////////////////// // Filename: bitmapclass.h //////////////////////////////////////////////////////////////////////////////// #ifndef _BITMAPCLASS_H_ #define _BITMAPCLASS_H_ /////////////////////// // MY CLASS INCLUDES // /////////////////////// #include "textureclass.h" //////////////////////////////////////////////////////////////////////////////// // Class name: BitmapClass //////////////////////////////////////////////////////////////////////////////// class BitmapClass { private:
每张位图实际上还是一个多边形对象,绘制方式与3D对象类似。对于2D图像来说,需要位置矢量和纹理坐标的信息。
struct VertexType { D3DXVECTOR3 position; D3DXVECTOR2 texture; }; public: BitmapClass(); BitmapClass(const BitmapClass&); ~BitmapClass(); bool Initialize(ID3D10Device*, int, int, WCHAR*, int, int); void Shutdown(); bool Render(ID3D10Device*, int, int); int GetIndexCount(); ID3D10ShaderResourceView* GetTexture(); private: bool InitializeBuffers(ID3D10Device*); void ShutdownBuffers(); bool UpdateBuffers(int, int); void RenderBuffers(ID3D10Device*); bool LoadTexture(ID3D10Device*, WCHAR*); void ReleaseTexture(); private: ID3D10Buffer *m_vertexBuffer, *m_indexBuffer; int m_vertexCount, m_indexCount; TextureClass* m_Texture;
BitmapClass需要保存一些3D对象不需要的额外信息,这些信息包括屏幕大小,位图大小,最近一次绘制时的位置,这些信息都保存在下面的私有变量中。
int m_screenWidth, m_screenHeight; int m_bitmapWidth, m_bitmapHeight; int m_previousPosX, m_previousPosY; }; #endif
Bitmapclass.cpp
//////////////////////////////////////////////////////////////////////////////// // Filename: bitmapclass.cpp //////////////////////////////////////////////////////////////////////////////// #include "bitmapclass.h"
构造函数中将所有私有指针初始化为null。
BitmapClass::BitmapClass() { m_vertexBuffer = 0; m_indexBuffer = 0; m_Texture = 0; } BitmapClass::BitmapClass(const BitmapClass& other) { } BitmapClass::~BitmapClass() { } bool BitmapClass::Initialize(ID3D10Device* device, int screenWidth, int screenHeight, WCHAR* textureFilename, int bitmapWidth, int bitmapHeight) { bool result;
在Initialize方法中保存了屏幕大小和图形大小,这些信息用于在绘制时生成正确的顶点位置。注意图像的大小不需要与纹理相同,你可以设置使用任意大小的纹理。
// Store the screen size. m_screenWidth = screenWidth; m_screenHeight = screenHeight; // Store the size in pixels that this bitmap should be rendered at. m_bitmapWidth = bitmapWidth; m_bitmapHeight = bitmapHeight;
前一帧绘制的位置首先初始化为-1,这是个重要的值。如果图像位置没有发生改变,我们就无需更新动态顶点缓存,可以节省处理时间。
// Initialize the previous rendering position to negative one. m_previousPosX = -1; m_previousPosY = -1; // Initialize the vertex and index buffer that hold the geometry for the triangle. result = InitializeBuffers(device); if(!result) { return false; } // Load the texture for this model. result = LoadTexture(device, textureFilename); if(!result) { return false; } return true; }
Shutdown方法释放顶点缓存、索引缓存和纹理。
void BitmapClass::Shutdown() { // Release the model texture. ReleaseTexture(); // Release the vertex and index buffers. ShutdownBuffers(); return; }
Render将2D图像的缓存传递到显卡,参数是图像的屏幕坐标。UpdateBuffers方法的参数为屏幕坐标,如果坐标发生改变,就将动态缓存中的顶点位置更新为新的值。之后RenderBuffers方法准备最终的顶点/索引进行绘制。
bool BitmapClass::Render(ID3D10Device* device, int positionX, int positionY) { bool result; // Re-build the dynamic vertex buffer for rendering to possibly a different location on the screen. result = UpdateBuffers(positionX, positionY); if(!result) { return false; } // Put the vertex and index buffers on the graphics pipeline to prepare them for drawing. RenderBuffers(device); return true; }
GetIndexCount方法返回2D图像的索引数量,非常简单,它总是6。
int BitmapClass::GetIndexCount() { return m_indexCount; }
GetTexture方法返回纹理资源的指针,shader会调用这个方法使之可以访问图像。
ID3D10ShaderResourceView* BitmapClass::GetTexture() { return m_Texture->GetTexture(); }
InitializeBuffers方法用于创建顶点和索引缓存。
bool BitmapClass::InitializeBuffers(ID3D10Device* device) { VertexType* vertices; unsigned long* indices; D3D10_BUFFER_DESC vertexBufferDesc, indexBufferDesc; D3D10_SUBRESOURCE_DATA vertexData, indexData; HRESULT result; int i;
因为一个矩形由两个三角形构成,所以顶点数量设置为6,索引也是6。
// Set the number of vertices in the vertex array. m_vertexCount = 6; // Set the number of indices in the index array. m_indexCount = m_vertexCount; // Create the vertex array. vertices = new VertexType[m_vertexCount]; if(!vertices) { return false; } // Create the index array. indices = new unsigned long[m_indexCount]; if(!indices) { return false; } // Initialize vertex array to zeros at first. memset(vertices, 0, (sizeof(VertexType) * m_vertexCount)); // Load the index array with data. for(i=0; i<m_indexCount; i++) { indices[i] = i; }
下面的代码是与ModelClass最大的区别。我们现在创建的是动态顶点缓存,因此可以在每帧必要时修改顶点缓存中的数据。需要将Usage设置为D3D10_USAGE_DYNAMIC,CPUAccessFlags设置为D3D10_CPU_ACCESS_WRITE。
// Set up the description of the dynamic vertex buffer. vertexBufferDesc.Usage = D3D10_USAGE_DYNAMIC; vertexBufferDesc.ByteWidth = sizeof(VertexType) * m_vertexCount; vertexBufferDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = D3D10_CPU_ACCESS_WRITE; vertexBufferDesc.MiscFlags = 0; // Give the subresource structure a pointer to the vertex data. vertexData.pSysMem = vertices; // Now finally create the vertex buffer. result = device->CreateBuffer(&vertexBufferDesc, &vertexData, &m_vertexBuffer); if(FAILED(result)) { return false; }
索引缓存无需设置为动态,因为六个索引总是指向相同的六个顶点,虽然顶点的坐标可能发生变化。
// Set up the description of the index buffer. indexBufferDesc.Usage = D3D10_USAGE_DEFAULT; indexBufferDesc.ByteWidth = sizeof(unsigned long) * m_indexCount; indexBufferDesc.BindFlags = D3D10_BIND_INDEX_BUFFER; indexBufferDesc.CPUAccessFlags = 0; indexBufferDesc.MiscFlags = 0; // Give the subresource structure a pointer to the index data. indexData.pSysMem = indices; // Create the index buffer. result = device->CreateBuffer(&indexBufferDesc, &indexData, &m_indexBuffer); if(FAILED(result)) { return false; } // Release the arrays now that the vertex and index buffers have been created and loaded. delete [] vertices; vertices = 0; delete [] indices; indices = 0; return true; }
void BitmapClass::ShutdownBuffers() { // Release the index buffer. if(m_indexBuffer) { m_indexBuffer->Release(); m_indexBuffer = 0; } // Release the vertex buffer. if(m_vertexBuffer) { m_vertexBuffer->Release(); m_vertexBuffer = 0; } return; }
每帧都要调用UpdateBuffers方法更新动态顶点缓存中的内容,使图像在屏幕上的位置发生改变。
bool BitmapClass::UpdateBuffers(int positionX, int positionY) { float left, right, top, bottom; VertexType* vertices; void* verticesPtr; HRESULT result;
我们检查位置是否发生变化。如果不变则无需修改顶点缓存,这个检查可以帮助我们节省大量的处理时间。
// If the position we are rendering this bitmap to has not changed then don't update the vertex buffer since it // currently has the correct parameters. if((positionX == m_previousPosX) && (positionY == m_previousPosY)) { return true; }
如果位置发生改变则需要保存这个新位置用于下次的检查。
// If it has changed then update the position it is being rendered to. m_previousPosX = positionX; m_previousPosY = positionY;
需要计算图像四个顶点的位置。你可以参见教程一开始的图理解计算的原理。
// Calculate the screen coordinates of the left side of the bitmap. left = (float)((m_screenWidth / 2) * -1) + (float)positionX; // Calculate the screen coordinates of the right side of the bitmap. right = left + (float)m_bitmapWidth; // Calculate the screen coordinates of the top of the bitmap. top = (float)(m_screenHeight / 2) - (float)positionY; // Calculate the screen coordinates of the bottom of the bitmap. bottom = top - (float)m_bitmapHeight;
计算好顶点坐标后,就可以创建一个临时顶点数组,然后将这六个顶点位置填充到这个数组中。
// Create the vertex array. vertices = new VertexType[m_vertexCount]; if(!vertices) { return false; } // Load the vertex array with data. // First triangle. vertices[0].position = D3DXVECTOR3(left, top, 0.0f); // Top left. vertices[0].texture = D3DXVECTOR2(0.0f, 0.0f); vertices[1].position = D3DXVECTOR3(right, bottom, 0.0f); // Bottom right. vertices[1].texture = D3DXVECTOR2(1.0f, 1.0f); vertices[2].position = D3DXVECTOR3(left, bottom, 0.0f); // Bottom left. vertices[2].texture = D3DXVECTOR2(0.0f, 1.0f); // Second triangle. vertices[3].position = D3DXVECTOR3(left, top, 0.0f); // Top left. vertices[3].texture = D3DXVECTOR2(0.0f, 0.0f); vertices[4].position = D3DXVECTOR3(right, top, 0.0f); // Top right. vertices[4].texture = D3DXVECTOR2(1.0f, 0.0f); vertices[5].position = D3DXVECTOR3(right, bottom, 0.0f); // Bottom right. vertices[5].texture = D3DXVECTOR2(1.0f, 1.0f);
使用Map和memcpy方法将顶点数组的内容复制到顶点缓存中。
// Initialize the vertex buffer pointer to null first. verticesPtr = 0; // Lock the vertex buffer. result = m_vertexBuffer->Map(D3D10_MAP_WRITE_DISCARD, 0, (void**)&verticesPtr); if(FAILED(result)) { return false; } // Copy the data into the vertex buffer. memcpy(verticesPtr, (void*)vertices, (sizeof(VertexType) * m_vertexCount)); // Unlock the vertex buffer. m_vertexBuffer->Unmap(); // Release the vertex array as it is no longer needed. delete [] vertices; vertices = 0; return true; }
RenderBuffers方法设置顶点缓存和索引缓存。
void BitmapClass::RenderBuffers(ID3D10Device* device) { unsigned int stride; unsigned int offset; // Set vertex buffer stride and offset. stride = sizeof(VertexType); offset = 0; // Set the vertex buffer to active in the input assembler so it can be rendered. device->IASetVertexBuffers(0, 1, &m_vertexBuffer, &stride, &offset); // Set the index buffer to active in the input assembler so it can be rendered. device->IASetIndexBuffer(m_indexBuffer, DXGI_FORMAT_R32_UINT, 0); // Set the type of primitive that should be rendered from this vertex buffer, in this case triangles. device->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST); return; }
下面的方法加载纹理。
bool BitmapClass::LoadTexture(ID3D10Device* device, WCHAR* filename) { bool result; // Create the texture object. m_Texture = new TextureClass; if(!m_Texture) { return false; } // Initialize the texture object. result = m_Texture->Initialize(device, filename); if(!result) { return false; } return true; }
ReleaseTexture方法释放纹理。
void BitmapClass::ReleaseTexture() { // Release the texture object. if(m_Texture) { m_Texture->Shutdown(); delete m_Texture; m_Texture = 0; } return; }
D3dclass.h
D3Dclass需要进行修改,添加开启和关闭Z缓存的代码。
//////////////////////////////////////////////////////////////////////////////// // Filename: d3dclass.h //////////////////////////////////////////////////////////////////////////////// #ifndef _D3DCLASS_H_ #define _D3DCLASS_H_ ///////////// // LINKING // ///////////// #pragma comment(lib, "d3d10.lib") #pragma comment(lib, "d3dx10.lib") #pragma comment(lib, "dxgi.lib") ////////////// // INCLUDES // ////////////// #include <d3d10.h> #include <d3dx10.h> //////////////////////////////////////////////////////////////////////////////// // Class name: D3DClass //////////////////////////////////////////////////////////////////////////////// class D3DClass { public: D3DClass(); D3DClass(const D3DClass&); ~D3DClass(); bool Initialize(int, int, bool, HWND, bool, float, float); void Shutdown(); void BeginScene(float, float, float, float); void EndScene(); ID3D10Device* GetDevice(); void GetProjectionMatrix(D3DXMATRIX&); void GetWorldMatrix(D3DXMATRIX&); void GetOrthoMatrix(D3DXMATRIX&); void GetVideoCardInfo(char*, int&);
我们需要两个新方法开启和关闭Z缓存。
void TurnZBufferOn(); void TurnZBufferOff(); private: bool m_vsync_enabled; int m_videoCardMemory; char m_videoCardDescription[128]; IDXGISwapChain* m_swapChain; ID3D10Device* m_device; ID3D10RenderTargetView* m_renderTargetView; ID3D10Texture2D* m_depthStencilBuffer; ID3D10DepthStencilState* m_depthStencilState; ID3D10DepthStencilView* m_depthStencilView; ID3D10RasterizerState* m_rasterState; D3DXMATRIX m_projectionMatrix; D3DXMATRIX m_worldMatrix; D3DXMATRIX m_orthoMatrix;
还需要一个新的深度模板状态用于2D绘制。
ID3D10DepthStencilState* m_depthDisabledStencilState; }; #endif
D3dclass.cpp
//////////////////////////////////////////////////////////////////////////////// // Filename: d3dclass.cpp //////////////////////////////////////////////////////////////////////////////// #include "d3dclass.h" D3DClass::D3DClass() { m_device = 0; m_swapChain = 0; m_renderTargetView = 0; m_depthStencilBuffer = 0; m_depthStencilState = 0; m_depthStencilView = 0; m_rasterState = 0;
在构造函数中将新的深度模板状态设置为null。
m_depthDisabledStencilState = 0; } D3DClass::D3DClass(const D3DClass& other) { } D3DClass::~D3DClass() { } bool D3DClass::Initialize(int screenWidth, int screenHeight, bool vsync, HWND hwnd, bool fullscreen, float screenDepth, float screenNear) { HRESULT result; IDXGIFactory* factory; IDXGIAdapter* adapter; IDXGIOutput* adapterOutput; unsigned int numModes, i, numerator, denominator, stringLength; DXGI_MODE_DESC* displayModeList; DXGI_ADAPTER_DESC adapterDesc; int error; DXGI_SWAP_CHAIN_DESC swapChainDesc; ID3D10Texture2D* backBufferPtr; D3D10_TEXTURE2D_DESC depthBufferDesc; D3D10_DEPTH_STENCIL_DESC depthStencilDesc; D3D10_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc; D3D10_VIEWPORT viewport; float fieldOfView, screenAspect; D3D10_RASTERIZER_DESC rasterDesc;
需要一个新的深度模板描述变量用于创建深度模板。
D3D10_DEPTH_STENCIL_DESC depthDisabledStencilDesc; // Store the vsync setting. m_vsync_enabled = vsync; // Create a DirectX graphics interface factory. result = CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&factory); if(FAILED(result)) { return false; } // Use the factory to create an adapter for the primary graphics interface (video card). result = factory->EnumAdapters(0, &adapter); if(FAILED(result)) { return false; } // Enumerate the primary adapter output (monitor). result = adapter->EnumOutputs(0, &adapterOutput); if(FAILED(result)) { return false; } // Get the number of modes that fit the DXGI_FORMAT_R8G8B8A8_UNORM display format for the adapter output (monitor). result = adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, NULL); if(FAILED(result)) { return false; } // Create a list to hold all the possible display modes for this monitor/video card combination. displayModeList = new DXGI_MODE_DESC[numModes]; if(!displayModeList) { return false; } // Now fill the display mode list structures. result = adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, displayModeList); if(FAILED(result)) { return false; } // Now go through all the display modes and find the one that matches the screen width and height. // When a match is found store the numerator and denominator of the refresh rate for that monitor. for(i=0; i<numModes; i++) { if(displayModeList[i].Width == (unsigned int)screenWidth) { if(displayModeList[i].Height == (unsigned int)screenHeight) { numerator = displayModeList[i].RefreshRate.Numerator; denominator = displayModeList[i].RefreshRate.Denominator; } } } // Get the adapter (video card) description. result = adapter->GetDesc(&adapterDesc); if(FAILED(result)) { return false; } // Store the dedicated video card memory in megabytes. m_videoCardMemory = (int)(adapterDesc.DedicatedVideoMemory / 1024 / 1024); // Convert the name of the video card to a character array and store it. error = wcstombs_s(&stringLength, m_videoCardDescription, 128, adapterDesc.Description, 128); if(error != 0) { return false; } // Release the display mode list. delete [] displayModeList; displayModeList = 0; // Release the adapter output. adapterOutput->Release(); adapterOutput = 0; // Release the adapter. adapter->Release(); adapter = 0; // Release the factory. factory->Release(); factory = 0; // Initialize the swap chain description. ZeroMemory(&swapChainDesc, sizeof(swapChainDesc)); // Set to a single back buffer. swapChainDesc.BufferCount = 1; // Set the width and height of the back buffer. swapChainDesc.BufferDesc.Width = screenWidth; swapChainDesc.BufferDesc.Height = screenHeight; // Set regular 32-bit surface for the back buffer. swapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; // Set the refresh rate of the back buffer. if(m_vsync_enabled) { swapChainDesc.BufferDesc.RefreshRate.Numerator = numerator; swapChainDesc.BufferDesc.RefreshRate.Denominator = denominator; } else { swapChainDesc.BufferDesc.RefreshRate.Numerator = 0; swapChainDesc.BufferDesc.RefreshRate.Denominator = 1; } // Set the usage of the back buffer. swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; // Set the handle for the window to render to. swapChainDesc.OutputWindow = hwnd; // Turn multisampling off. swapChainDesc.SampleDesc.Count = 1; swapChainDesc.SampleDesc.Quality = 0; // Set to full screen or windowed mode. if(fullscreen) { swapChainDesc.Windowed = false; } else { swapChainDesc.Windowed = true; } // Set the scan line ordering and scaling to unspecified. swapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED; swapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED; // Discard the back buffer contents after presenting. swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD; // Don't set the advanced flags. swapChainDesc.Flags = 0; // Create the swap chain and the Direct3D device. result = D3D10CreateDeviceAndSwapChain(NULL, D3D10_DRIVER_TYPE_HARDWARE, NULL, 0, D3D10_SDK_VERSION, &swapChainDesc, &m_swapChain, &m_device); if(FAILED(result)) { return false; } // Get the pointer to the back buffer. result = m_swapChain->GetBuffer(0, __uuidof(ID3D10Texture2D), (LPVOID*)&backBufferPtr); if(FAILED(result)) { return false; } // Create the render target view with the back buffer pointer. result = m_device->CreateRenderTargetView(backBufferPtr, NULL, &m_renderTargetView); if(FAILED(result)) { return false; } // Release pointer to the back buffer as we no longer need it. backBufferPtr->Release(); backBufferPtr = 0; // Initialize the description of the depth buffer. ZeroMemory(&depthBufferDesc, sizeof(depthBufferDesc)); // Set up the description of the depth buffer. depthBufferDesc.Width = screenWidth; depthBufferDesc.Height = screenHeight; depthBufferDesc.MipLevels = 1; depthBufferDesc.ArraySize = 1; depthBufferDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthBufferDesc.SampleDesc.Count = 1; depthBufferDesc.SampleDesc.Quality = 0; depthBufferDesc.Usage = D3D10_USAGE_DEFAULT; depthBufferDesc.BindFlags = D3D10_BIND_DEPTH_STENCIL; depthBufferDesc.CPUAccessFlags = 0; depthBufferDesc.MiscFlags = 0; // Create the texture for the depth buffer using the filled out description. result = m_device->CreateTexture2D(&depthBufferDesc, NULL, &m_depthStencilBuffer); if(FAILED(result)) { return false; } // Initialize the description of the stencil state. ZeroMemory(&depthStencilDesc, sizeof(depthStencilDesc)); // Set up the description of the stencil state. depthStencilDesc.DepthEnable = true; depthStencilDesc.DepthWriteMask = D3D10_DEPTH_WRITE_MASK_ALL; depthStencilDesc.DepthFunc = D3D10_COMPARISON_LESS; depthStencilDesc.StencilEnable = true; depthStencilDesc.StencilReadMask = 0xFF; depthStencilDesc.StencilWriteMask = 0xFF; // Stencil operations if pixel is front-facing. depthStencilDesc.FrontFace.StencilFailOp = D3D10_STENCIL_OP_KEEP; depthStencilDesc.FrontFace.StencilDepthFailOp = D3D10_STENCIL_OP_INCR; depthStencilDesc.FrontFace.StencilPassOp = D3D10_STENCIL_OP_KEEP; depthStencilDesc.FrontFace.StencilFunc = D3D10_COMPARISON_ALWAYS; // Stencil operations if pixel is back-facing. depthStencilDesc.BackFace.StencilFailOp = D3D10_STENCIL_OP_KEEP; depthStencilDesc.BackFace.StencilDepthFailOp = D3D10_STENCIL_OP_DECR; depthStencilDesc.BackFace.StencilPassOp = D3D10_STENCIL_OP_KEEP; depthStencilDesc.BackFace.StencilFunc = D3D10_COMPARISON_ALWAYS; // Create the depth stencil state. result = m_device->CreateDepthStencilState(&depthStencilDesc, &m_depthStencilState); if(FAILED(result)) { return false; } // Set the depth stencil state on the D3D device. m_device->OMSetDepthStencilState(m_depthStencilState, 1); // Initialize the depth stencil view. ZeroMemory(&depthStencilViewDesc, sizeof(depthStencilViewDesc)); // Set up the depth stencil view description. depthStencilViewDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthStencilViewDesc.ViewDimension = D3D10_DSV_DIMENSION_TEXTURE2D; depthStencilViewDesc.Texture2D.MipSlice = 0; // Create the depth stencil view. result = m_device->CreateDepthStencilView(m_depthStencilBuffer, &depthStencilViewDesc, &m_depthStencilView); if(FAILED(result)) { return false; } // Bind the render target view and depth stencil buffer to the output render pipeline. m_device->OMSetRenderTargets(1, &m_renderTargetView, m_depthStencilView); // Setup the raster description which will determine how and what polygons will be drawn. rasterDesc.AntialiasedLineEnable = false; rasterDesc.CullMode = D3D10_CULL_BACK; rasterDesc.DepthBias = 0; rasterDesc.DepthBiasClamp = 0.0f; rasterDesc.DepthClipEnable = true; rasterDesc.FillMode = D3D10_FILL_SOLID; rasterDesc.FrontCounterClockwise = false; rasterDesc.MultisampleEnable = false; rasterDesc.ScissorEnable = false; rasterDesc.SlopeScaledDepthBias = 0.0f; // Create the rasterizer state from the description we just filled out. result = m_device->CreateRasterizerState(&rasterDesc, &m_rasterState); if(FAILED(result)) { return false; } // Now set the rasterizer state. m_device->RSSetState(m_rasterState); // Setup the viewport for rendering. viewport.Width = screenWidth; viewport.Height = screenHeight; viewport.MinDepth = 0.0f; viewport.MaxDepth = 1.0f; viewport.TopLeftX = 0; viewport.TopLeftY = 0; // Create the viewport. m_device->RSSetViewports(1, &viewport); // Setup the projection matrix. fieldOfView = (float)D3DX_PI / 4.0f; screenAspect = (float)screenWidth / (float)screenHeight; // Create the projection matrix for 3D rendering. D3DXMatrixPerspectiveFovLH(&m_projectionMatrix, fieldOfView, screenAspect, screenNear, screenDepth); // Initialize the world matrix to the identity matrix. D3DXMatrixIdentity(&m_worldMatrix); // Create an orthographic projection matrix for 2D rendering. D3DXMatrixOrthoLH(&m_orthoMatrix, (float)screenWidth, (float)screenHeight, screenNear, screenDepth);
下面的代码中我们创建了深度模板描述。这个新描述与旧描述唯一的不同就是DepthEnable被设置为false。
// Clear the second depth stencil state before setting the parameters. ZeroMemory(&depthDisabledStencilDesc, sizeof(depthDisabledStencilDesc)); // Now create a second depth stencil state which turns off the Z buffer for 2D rendering. The only difference is // that DepthEnable is set to false, all other parameters are the same as the other depth stencil state. depthDisabledStencilDesc.DepthEnable = false; depthDisabledStencilDesc.DepthWriteMask = D3D10_DEPTH_WRITE_MASK_ALL; depthDisabledStencilDesc.DepthFunc = D3D10_COMPARISON_LESS; depthDisabledStencilDesc.StencilEnable = true; depthDisabledStencilDesc.StencilReadMask = 0xFF; depthDisabledStencilDesc.StencilWriteMask = 0xFF; depthDisabledStencilDesc.FrontFace.StencilFailOp = D3D10_STENCIL_OP_KEEP; depthDisabledStencilDesc.FrontFace.StencilDepthFailOp = D3D10_STENCIL_OP_INCR; depthDisabledStencilDesc.FrontFace.StencilPassOp = D3D10_STENCIL_OP_KEEP; depthDisabledStencilDesc.FrontFace.StencilFunc = D3D10_COMPARISON_ALWAYS; depthDisabledStencilDesc.BackFace.StencilFailOp = D3D10_STENCIL_OP_KEEP; depthDisabledStencilDesc.BackFace.StencilDepthFailOp = D3D10_STENCIL_OP_DECR; depthDisabledStencilDesc.BackFace.StencilPassOp = D3D10_STENCIL_OP_KEEP; depthDisabledStencilDesc.BackFace.StencilFunc = D3D10_COMPARISON_ALWAYS;
现在就可以创建新深度模板了。
// Create the state using the device. result = m_device->CreateDepthStencilState(&depthDisabledStencilDesc, &m_depthDisabledStencilState); if(FAILED(result)) { return false; } return true; } void D3DClass::Shutdown() { // Before shutting down set to windowed mode or when you release the swap chain it will throw an exception. if(m_swapChain) { m_swapChain->SetFullscreenState(false, NULL); }
在Shutdown方法中释放新深度模板。
if(m_depthDisabledStencilState) { m_depthDisabledStencilState->Release(); m_depthDisabledStencilState = 0; } if(m_rasterState) { m_rasterState->Release(); m_rasterState = 0; } if(m_depthStencilView) { m_depthStencilView->Release(); m_depthStencilView = 0; } if(m_depthStencilState) { m_depthStencilState->Release(); m_depthStencilState = 0; } if(m_depthStencilBuffer) { m_depthStencilBuffer->Release(); m_depthStencilBuffer = 0; } if(m_renderTargetView) { m_renderTargetView->Release(); m_renderTargetView = 0; } if(m_swapChain) { m_swapChain->Release(); m_swapChain = 0; } if(m_device) { m_device->Release(); m_device = 0; } return; } void D3DClass::BeginScene(float red, float green, float blue, float alpha) { float color[4]; // Setup the color to clear the buffer to. color[0] = red; color[1] = green; color[2] = blue; color[3] = alpha; // Clear the back buffer. m_device->ClearRenderTargetView(m_renderTargetView, color); // Clear the depth buffer. m_device->ClearDepthStencilView(m_depthStencilView, D3D10_CLEAR_DEPTH, 1.0f, 0); return; } void D3DClass::EndScene() { // Present the back buffer to the screen since rendering is complete. if(m_vsync_enabled) { // Lock to screen refresh rate. m_swapChain->Present(1, 0); } else { // Present as fast as possible. m_swapChain->Present(0, 0); } return; } ID3D10Device* D3DClass::GetDevice() { return m_device; } void D3DClass::GetProjectionMatrix(D3DXMATRIX& projectionMatrix) { projectionMatrix = m_projectionMatrix; return; } void D3DClass::GetWorldMatrix(D3DXMATRIX& worldMatrix) { worldMatrix = m_worldMatrix; return; } void D3DClass::GetOrthoMatrix(D3DXMATRIX& orthoMatrix) { orthoMatrix = m_orthoMatrix; return; } void D3DClass::GetVideoCardInfo(char* cardName, int& memory) { strcpy_s(cardName, 128, m_videoCardDescription); memory = m_videoCardMemory; return; }
下面的新方法用于开启和关闭Z缓存。要开启Z缓存只需设置原始的深度模板,要关闭Z缓存设置的是新深度模板。通常使用的最好方式就是先绘制3D内容,然后关闭Z缓存进行2D绘制,接着再把Z缓存打开。
void D3DClass::TurnZBufferOn() { m_device->OMSetDepthStencilState(m_depthStencilState, 1); return; } void D3DClass::TurnZBufferOff() { m_device->OMSetDepthStencilState(m_depthDisabledStencilState, 1); return; }
Graphicsclass.h
//////////////////////////////////////////////////////////////////////////////// // Filename: graphicsclass.h //////////////////////////////////////////////////////////////////////////////// #ifndef _GRAPHICSCLASS_H_ #define _GRAPHICSCLASS_H_ /////////////////////// // MY CLASS INCLUDES // /////////////////////// #include "d3dclass.h" #include "cameraclass.h" #include "textureshaderclass.h"
头文件中包含了新的BitmapClass头文件。
#include "bitmapclass.h" ///////////// // GLOBALS // ///////////// const bool FULL_SCREEN = true; const bool VSYNC_ENABLED = true; const float SCREEN_DEPTH = 1000.0f; const float SCREEN_NEAR = 0.1f; //////////////////////////////////////////////////////////////////////////////// // Class name: GraphicsClass //////////////////////////////////////////////////////////////////////////////// class GraphicsClass { public: GraphicsClass(); GraphicsClass(const GraphicsClass&); ~GraphicsClass(); bool Initialize(int, int, HWND); void Shutdown(); bool Frame(); private: bool Render(float); private: D3DClass* m_D3D; CameraClass* m_Camera; TextureShaderClass* m_TextureShader;
在这里创建新的BitmapClass对象。
BitmapClass* m_Bitmap; }; #endif
Graphicsclass.cpp
//////////////////////////////////////////////////////////////////////////////// // Filename: graphicsclass.cpp //////////////////////////////////////////////////////////////////////////////// #include "graphicsclass.h" GraphicsClass::GraphicsClass() { m_D3D = 0; m_Camera = 0; m_TextureShader = 0;
在构造函数中将bitmap对象初始化为null。
m_Bitmap = 0; } GraphicsClass::GraphicsClass(const GraphicsClass& other) { } GraphicsClass::~GraphicsClass() { } bool GraphicsClass::Initialize(int screenWidth, int screenHeight, HWND hwnd) { bool result; // Create the Direct3D object. m_D3D = new D3DClass; if(!m_D3D) { return false; } // Initialize the Direct3D object. result = m_D3D->Initialize(screenWidth, screenHeight, VSYNC_ENABLED, hwnd, FULL_SCREEN, SCREEN_DEPTH, SCREEN_NEAR); if(!result) { MessageBox(hwnd, L"Could not initialize Direct3D.", L"Error", MB_OK); return false; } // Create the camera object. m_Camera = new CameraClass; if(!m_Camera) { return false; } // Set the initial position of the camera. m_Camera->SetPosition(0.0f, 0.0f, -10.0f); // Create the texture shader object. m_TextureShader = new TextureShaderClass; if(!m_TextureShader) { return false; } // Initialize the texture shader object. result = m_TextureShader->Initialize(m_D3D->GetDevice(), hwnd); if(!result) { MessageBox(hwnd, L"Could not initialize the texture shader object.", L"Error", MB_OK); return false; }
下面的代码创建并初始化BitmapClass对象。使用的纹理为seafloor.dds,大小为256x256。这个大小可以设置为任何值,而无需与纹理的实际大小相同。
// Create the bitmap object. m_Bitmap = new BitmapClass; if(!m_Bitmap) { return false; } // Initialize the bitmap object. result = m_Bitmap->Initialize(m_D3D->GetDevice(), screenWidth, screenHeight, L"../Engine/data/seafloor.dds", 256, 256); if(!result) { MessageBox(hwnd, L"Could not initialize the bitmap object.", L"Error", MB_OK); return false; } return true; } void GraphicsClass::Shutdown() {
在Shutdown方法中释放BitmapClass对象。
// Release the bitmap object. if(m_Bitmap) { m_Bitmap->Shutdown(); delete m_Bitmap; m_Bitmap = 0; } // Release the texture shader object. if(m_TextureShader) { m_TextureShader->Shutdown(); delete m_TextureShader; m_TextureShader = 0; } // Release the camera object. if(m_Camera) { delete m_Camera; m_Camera = 0; } // Release the D3D object. if(m_D3D) { m_D3D->Shutdown(); delete m_D3D; m_D3D = 0; } return; } bool GraphicsClass::Frame() { bool result; static float rotation = 0.0f; // Update the rotation variable each frame. rotation += (float)D3DX_PI * 0.005f; if(rotation > 360.0f) { rotation -= 360.0f; } // Render the graphics scene. result = Render(rotation); if(!result) { return false; } return true; } bool GraphicsClass::Render(float rotation) { D3DXMATRIX worldMatrix, viewMatrix, projectionMatrix, orthoMatrix; bool result; // Clear the buffers to begin the scene. m_D3D->BeginScene(0.0f, 0.0f, 0.0f, 1.0f); // Generate the view matrix based on the camera's position. m_Camera->Render(); // Get the world, view, and projection matrices from the camera and d3d objects. m_Camera->GetViewMatrix(viewMatrix); m_D3D->GetWorldMatrix(worldMatrix); m_D3D->GetProjectionMatrix(projectionMatrix);
下面的代码从D3Dclass中获取正交投影矩阵用于2D绘制,使用这个正交投影矩阵代替前面教程中的投影矩阵。
m_D3D->GetOrthoMatrix(orthoMatrix);
在绘制2D内容之前需要关闭Z buffer缓存。
// Turn off the Z buffer to begin all 2D rendering. m_D3D->TurnZBufferOff();
然后将图像绘制在屏幕的100, 100位置。
// Put the bitmap vertex and index buffers on the graphics pipeline to prepare them for drawing. result = m_Bitmap->Render(m_D3D->GetDevice(), 100, 100); if(!result) { return false; }
准备好顶点/索引缓存后就可以使用texture shader进行绘制了。注意在绘制2D时我们使用的是正交投影矩阵。第二个要注意的是如果视矩阵会发生改变的话,你需要创建一个新的针对2D绘制的视矩阵。而本教程中相机是不动的,所以你使用的就是默认的视矩阵。
// Render the bitmap using the texture shader. m_TextureShader->Render(m_D3D->GetDevice(), m_Bitmap->GetIndexCount(), worldMatrix, viewMatrix, orthoMatrix, m_Bitmap->GetTexture()); // Turn the Z buffer back on now that all 2D rendering has completed. m_D3D->TurnZBufferOn(); // Present the rendered scene to the screen. m_D3D->EndScene(); return true; }
总结
现在我们就可以在屏幕上绘制2D图像了,在此基础上我们还可以实现用户界面和字体系统。
练习
1.编译代码在屏幕的100,100位置绘制一张2D图像。
2.改变图像的位置。
3.在GraphicsClass中的m_Bitmap->Initialize方法中改变图像的大小。
4.改变用于2D图像的纹理。
文件下载(已下载 1492 次)发布时间:2012/7/20 下午4:26:16 阅读次数:13546