Direct3D 11教程6:光照
原文地址:http://msdn.microsoft.com/en-us/library/ff729723.aspx。
概览
在前面的教程中,因为所有物体都是以相同的方式被光照亮,因此还不够真实。本教程将介绍简单的光照概念以及如何施加光照,这个技术将使用Lambert光照模型。
这个教程的会在前一个示例的基础上包含一个光源,光源链接在轨道运行的立方体上,光照的效果可以在中央立方体表面上看到。
源代码
(SDK root)\Samples\C++\Direct3D11\Tutorials\Tutorial06
光照
在本教程中将介绍最简单的光照类型:Lambert光照。Lambert光照具有相同的光照强度而不考虑离开光源的距离。当光照射到表面时,反射光的强度根据光在表面上的入射角大小进行计算。当光线垂直射向表面,反射回所有光照,具有最大的光强。当入射角变大时,光的强度也会减弱。
要计算表面的光照强度,必须计算光照方向和表面法线之间的夹角。法线定义为垂直于平面的一个矢量,角度的计算只需使用一个简单的点乘即可,返回的结果是光照方向矢量在法线上的投影长度。入射角越大,投影长度越短,这样,我们就有一个正确的方法调整漫反射光照。
本教程使用的光源接近于单向光,表示光源的矢量决定了光线的方向。因为这是一个近似,所以物体的位置无关紧要,我们认为光照方向都是一样的。这种光源的一个例子就是太阳,在一个场景中,太阳光总是被认为是同一方向的。
另一种类型的光源是点光源,从光源中心发出光线;还有一种是聚光灯,它发出的光线具有方向性但又不是均匀照射所有物体。
初始化光照
在本教程中,我们使用两个光源。一个静止放置在立方体的上后方,另一个绕着它旋转。
因为光照是由shader进行计算的,所以必须首先声明变量然后将它们与technique绑定。在本例中,我们只需光照方向和颜色值。第一个光源为灰色不移动,第二个是一个沿轨道绕行的红色光源。
// 设置光源参数 XMFLOAT4 vLightDirs[2] = { XMFLOAT4( -0.577f, 0.577f, -0.577f, 1.0f ), XMFLOAT4( 0.0f, 0.0f, -1.0f, 1.0f ), }; XMFLOAT4 vLightColors[2] = { XMFLOAT4( 0.5f, 0.5f, 0.5f, 1.0f ), XMFLOAT4( 0.5f, 0.0f, 0.0f, 1.0f ) };
第二个光源还像上一个教程中的立方体那样旋转,施加的矩阵会改变光照方向,让光照总是朝向中心。注意,XMVec3Transform方法用来在矢量上乘以矩阵。在前面的教程中,我们只是将变换矩阵乘进世界矩阵中,然后传递到shader用于变换;但本例中基于简化的考虑,我们在CPU中对光源进行世界变换。
// 使第2个正方体绕原点旋转 // Rotate the second light around the origin XMMATRIX mRotate = XMMatrixRotationY( -2.0f * t ); XMVECTOR vLightDir = XMLoadFloat4( &vLightDirs[1] ); vLightDir = XMVector3Transform( vLightDir, mRotate ); XMStoreFloat4( &vLightDirs[1], vLightDir );
光照方向和颜色都传递到shader中,对应的变量被调用并设置,参数被传递。
// // 更新矩阵和光源变量 // ConstantBuffer cb1; cb1.mWorld = XMMatrixTranspose( g_World ); cb1.mView = XMMatrixTranspose( g_View ); cb1.mProjection = XMMatrixTranspose( g_Projection ); cb1.vLightDir[0] = vLightDirs[0]; cb1.vLightDir[1] = vLightDirs[1]; cb1.vLightColor[0] = vLightColors[0]; cb1.vLightColor[1] = vLightColors[1]; cb1.vOutputColor = XMFLOAT4(0, 0, 0, 0); g_pImmediateContext->UpdateSubresource( g_pConstantBuffer, 0, NULL, &cb1, 0, 0 );
在像素着色器中绘制光照
设置了所有数据我们就可以计算每一个像素的lambert光照因子了,使用的是上面提到过的点乘规则。
有了点乘结果后,就可以将这个结果乘以光照颜色计算光照的影响了。这个值被传递到saturate方法,这个方法将结果限定在[0,1]区间。最后,两个光源的效果会相加获得最终的像素颜色。
物体表面材质并没有考虑在光照计算中,表面的最终颜色只包含光照颜色。
// // Pixel Shader // float4 PS( PS_INPUT input) : SV_Target { float4 finalColor = 0; //对两个光源进行NdotL光照计算 for(int i=0; i<2; i++) { finalColor += saturate( dot( (float3)vLightDir[i],input.Norm) * vLightColor[i] ); } return finalColor; }
经过像素着色器的处理,像素的颜色就被光照调制,你可以在中央立方体表面看到光照效果。因为本例中同一表面的法线方向相同,所以同一表面的光照强度相同。漫反射(Diffuse)光照是一个非常简单容易的光照模型,你可以使用更复杂的光照模型实现更加真实的效果。
完整代码
#include <windows.h> #include <d3d11.h> #include <d3dcompiler.h> #include <directxmath.h> #include "resource.h" using namespace DirectX; //-------------------------------------------------------------------------------------- // 顶点结构 //-------------------------------------------------------------------------------------- struct SimpleVertex { XMFLOAT3 Pos; XMFLOAT3 Normal; }; struct ConstantBuffer { XMMATRIX mWorld; XMMATRIX mView; XMMATRIX mProjection; XMFLOAT4 vLightDir[2]; XMFLOAT4 vLightColor[2]; XMFLOAT4 vOutputColor; }; //-------------------------------------------------------------------------------------- // 全局变量 //-------------------------------------------------------------------------------------- HINSTANCE g_hInst = NULL; HWND g_hWnd = NULL; D3D_DRIVER_TYPE g_driverType = D3D_DRIVER_TYPE_NULL; D3D_FEATURE_LEVEL g_featureLevel = D3D_FEATURE_LEVEL_11_0; ID3D11Device* g_pd3dDevice = NULL; ID3D11DeviceContext* g_pImmediateContext = NULL; IDXGISwapChain* g_pSwapChain = NULL; ID3D11RenderTargetView* g_pRenderTargetView = NULL; ID3D11Texture2D* g_pDepthStencil = NULL; ID3D11DepthStencilView* g_pDepthStencilView = NULL; ID3D11VertexShader* g_pVertexShader = NULL; ID3D11PixelShader* g_pPixelShader = NULL; ID3D11PixelShader* g_pPixelShaderSolid = NULL; ID3D11InputLayout* g_pVertexLayout = NULL; ID3D11Buffer* g_pVertexBuffer = NULL; ID3D11Buffer* g_pIndexBuffer = NULL; ID3D11Buffer* g_pConstantBuffer = NULL; XMMATRIX g_World; XMMATRIX g_View; XMMATRIX g_Projection; //-------------------------------------------------------------------------------------- // 函数声明 //-------------------------------------------------------------------------------------- HRESULT InitWindow( HINSTANCE hInstance, int nCmdShow ); HRESULT InitDevice(); void CleanupDevice(); LRESULT CALLBACK WndProc( HWND, UINT, WPARAM, LPARAM ); void Render(); //-------------------------------------------------------------------------------------- // Entry point to the program. Initializes everything and goes into a message processing // loop. Idle time is used to render the scene. //-------------------------------------------------------------------------------------- int WINAPI wWinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance, LPWSTR lpCmdLine, int nCmdShow ) { UNREFERENCED_PARAMETER( hPrevInstance ); UNREFERENCED_PARAMETER( lpCmdLine ); if( FAILED( InitWindow( hInstance, nCmdShow ) ) ) return 0; if( FAILED( InitDevice() ) ) { CleanupDevice(); return 0; } // Main message loop MSG msg = {0}; while( WM_QUIT != msg.message ) { if( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) ) { TranslateMessage( &msg ); DispatchMessage( &msg ); } else { Render(); } } CleanupDevice(); return ( int )msg.wParam; } //-------------------------------------------------------------------------------------- // 注册和创建窗口 //-------------------------------------------------------------------------------------- HRESULT InitWindow( HINSTANCE hInstance, int nCmdShow ) { // Register class WNDCLASSEX wcex; wcex.cbSize = sizeof( WNDCLASSEX ); wcex.style = CS_HREDRAW | CS_VREDRAW; wcex.lpfnWndProc = WndProc; wcex.cbClsExtra = 0; wcex.cbWndExtra = 0; wcex.hInstance = hInstance; wcex.hIcon = LoadIcon( hInstance, ( LPCTSTR )IDI_TUTORIAL1 ); wcex.hCursor = LoadCursor( NULL, IDC_ARROW ); wcex.hbrBackground = ( HBRUSH )( COLOR_WINDOW + 1 ); wcex.lpszMenuName = NULL; wcex.lpszClassName = L"TutorialWindowClass"; wcex.hIconSm = LoadIcon( wcex.hInstance, ( LPCTSTR )IDI_TUTORIAL1 ); if( !RegisterClassEx( &wcex ) ) return E_FAIL; // Create window g_hInst = hInstance; RECT rc = { 0, 0, 640, 480 }; AdjustWindowRect( &rc, WS_OVERLAPPEDWINDOW, FALSE ); g_hWnd = CreateWindow( L"TutorialWindowClass", L"Direct3D 11 Tutorial 6", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, rc.right - rc.left, rc.bottom - rc.top, NULL, NULL, hInstance, NULL ); if( !g_hWnd ) return E_FAIL; ShowWindow( g_hWnd, nCmdShow ); return S_OK; } //-------------------------------------------------------------------------------------- // Helper for compiling shaders with D3DCompile // // With VS 11, we could load up prebuilt .cso files instead... //-------------------------------------------------------------------------------------- HRESULT CompileShaderFromFile( WCHAR* szFileName, LPCSTR szEntryPoint, LPCSTR szShaderModel, ID3DBlob** ppBlobOut ) { HRESULT hr = S_OK; DWORD dwShaderFlags = D3DCOMPILE_ENABLE_STRICTNESS; #if defined( DEBUG ) || defined( _DEBUG ) // Set the D3DCOMPILE_DEBUG flag to embed debug information in the shaders. // Setting this flag improves the shader debugging experience, but still allows // the shaders to be optimized and to run exactly the way they will run in // the release configuration of this program. dwShaderFlags |= D3DCOMPILE_DEBUG; #endif ID3DBlob* pErrorBlob; hr = D3DCompileFromFile( szFileName, NULL, NULL, szEntryPoint, szShaderModel, dwShaderFlags, 0, ppBlobOut, &pErrorBlob ); if( FAILED(hr) ) { if( pErrorBlob != NULL ) OutputDebugStringA( (char*)pErrorBlob->GetBufferPointer() ); if( pErrorBlob ) pErrorBlob->Release(); return hr; } if( pErrorBlob ) pErrorBlob->Release(); return S_OK; } //-------------------------------------------------------------------------------------- // 创建Direct3D设备和交换链 //-------------------------------------------------------------------------------------- HRESULT InitDevice() { HRESULT hr = S_OK; RECT rc; GetClientRect( g_hWnd, &rc ); UINT width = rc.right - rc.left; UINT height = rc.bottom - rc.top; UINT createDeviceFlags = 0; #ifdef _DEBUG createDeviceFlags |= D3D11_CREATE_DEVICE_DEBUG; #endif D3D_DRIVER_TYPE driverTypes[] = { D3D_DRIVER_TYPE_HARDWARE, D3D_DRIVER_TYPE_WARP, D3D_DRIVER_TYPE_REFERENCE, }; UINT numDriverTypes = ARRAYSIZE( driverTypes ); D3D_FEATURE_LEVEL featureLevels[] = { D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_10_1, D3D_FEATURE_LEVEL_10_0, }; UINT numFeatureLevels = ARRAYSIZE( featureLevels ); DXGI_SWAP_CHAIN_DESC sd; ZeroMemory( &sd, sizeof( sd ) ); sd.BufferCount = 1; sd.BufferDesc.Width = width; sd.BufferDesc.Height = height; sd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; sd.BufferDesc.RefreshRate.Numerator = 60; sd.BufferDesc.RefreshRate.Denominator = 1; sd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; sd.OutputWindow = g_hWnd; sd.SampleDesc.Count = 1; sd.SampleDesc.Quality = 0; sd.Windowed = TRUE; for( UINT driverTypeIndex = 0; driverTypeIndex < numDriverTypes; driverTypeIndex++ ) { g_driverType = driverTypes[driverTypeIndex]; hr = D3D11CreateDeviceAndSwapChain( NULL, g_driverType, NULL, createDeviceFlags, featureLevels, numFeatureLevels, D3D11_SDK_VERSION, &sd, &g_pSwapChain, &g_pd3dDevice, &g_featureLevel, &g_pImmediateContext ); if( SUCCEEDED( hr ) ) break; } if( FAILED( hr ) ) return hr; // Create a render target view ID3D11Texture2D* pBackBuffer = NULL; hr = g_pSwapChain->GetBuffer( 0, __uuidof( ID3D11Texture2D ), ( LPVOID* )&pBackBuffer ); if( FAILED( hr ) ) return hr; hr = g_pd3dDevice->CreateRenderTargetView( pBackBuffer, NULL, &g_pRenderTargetView ); pBackBuffer->Release(); if( FAILED( hr ) ) return hr; // Create depth stencil texture D3D11_TEXTURE2D_DESC descDepth; ZeroMemory( &descDepth, sizeof(descDepth) ); descDepth.Width = width; descDepth.Height = height; descDepth.MipLevels = 1; descDepth.ArraySize = 1; descDepth.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; descDepth.SampleDesc.Count = 1; descDepth.SampleDesc.Quality = 0; descDepth.Usage = D3D11_USAGE_DEFAULT; descDepth.BindFlags = D3D11_BIND_DEPTH_STENCIL; descDepth.CPUAccessFlags = 0; descDepth.MiscFlags = 0; hr = g_pd3dDevice->CreateTexture2D( &descDepth, NULL, &g_pDepthStencil ); if( FAILED( hr ) ) return hr; // Create the depth stencil view D3D11_DEPTH_STENCIL_VIEW_DESC descDSV; ZeroMemory( &descDSV, sizeof(descDSV) ); descDSV.Format = descDepth.Format; descDSV.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D; descDSV.Texture2D.MipSlice = 0; hr = g_pd3dDevice->CreateDepthStencilView( g_pDepthStencil, &descDSV, &g_pDepthStencilView ); if( FAILED( hr ) ) return hr; g_pImmediateContext->OMSetRenderTargets( 1, &g_pRenderTargetView, g_pDepthStencilView ); // Setup the viewport D3D11_VIEWPORT vp; vp.Width = (FLOAT)width; vp.Height = (FLOAT)height; vp.MinDepth = 0.0f; vp.MaxDepth = 1.0f; vp.TopLeftX = 0; vp.TopLeftY = 0; g_pImmediateContext->RSSetViewports( 1, &vp ); // Compile the vertex shader ID3DBlob* pVSBlob = NULL; hr = CompileShaderFromFile( L"Tutorial06.fx", "VS", "vs_4_0", &pVSBlob ); if( FAILED( hr ) ) { MessageBox( NULL, L"The FX file cannot be compiled. Please run this executable from the directory that contains the FX file.", L"Error", MB_OK ); return hr; } // Create the vertex shader hr = g_pd3dDevice->CreateVertexShader( pVSBlob->GetBufferPointer(), pVSBlob->GetBufferSize(), NULL, &g_pVertexShader ); if( FAILED( hr ) ) { pVSBlob->Release(); return hr; } // Define the input layout D3D11_INPUT_ELEMENT_DESC layout[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 }, }; UINT numElements = ARRAYSIZE( layout ); // Create the input layout hr = g_pd3dDevice->CreateInputLayout( layout, numElements, pVSBlob->GetBufferPointer(), pVSBlob->GetBufferSize(), &g_pVertexLayout ); pVSBlob->Release(); if( FAILED( hr ) ) return hr; // Set the input layout g_pImmediateContext->IASetInputLayout( g_pVertexLayout ); // Compile the pixel shader ID3DBlob* pPSBlob = NULL; hr = CompileShaderFromFile( L"Tutorial06.fx", "PS", "ps_4_0", &pPSBlob ); if( FAILED( hr ) ) { MessageBox( NULL, L"The FX file cannot be compiled. Please run this executable from the directory that contains the FX file.", L"Error", MB_OK ); return hr; } // Create the pixel shader hr = g_pd3dDevice->CreatePixelShader( pPSBlob->GetBufferPointer(), pPSBlob->GetBufferSize(), NULL, &g_pPixelShader ); pPSBlob->Release(); if( FAILED( hr ) ) return hr; // Compile the pixel shader pPSBlob = NULL; hr = CompileShaderFromFile( L"Tutorial06.fx", "PSSolid", "ps_4_0", &pPSBlob ); if( FAILED( hr ) ) { MessageBox( NULL, L"The FX file cannot be compiled. Please run this executable from the directory that contains the FX file.", L"Error", MB_OK ); return hr; } // Create the pixel shader hr = g_pd3dDevice->CreatePixelShader( pPSBlob->GetBufferPointer(), pPSBlob->GetBufferSize(), NULL, &g_pPixelShaderSolid ); pPSBlob->Release(); if( FAILED( hr ) ) return hr; // Create vertex buffer SimpleVertex vertices[] = { { XMFLOAT3( -1.0f, 1.0f, -1.0f ), XMFLOAT3( 0.0f, 1.0f, 0.0f ) }, { XMFLOAT3( 1.0f, 1.0f, -1.0f ), XMFLOAT3( 0.0f, 1.0f, 0.0f ) }, { XMFLOAT3( 1.0f, 1.0f, 1.0f ), XMFLOAT3( 0.0f, 1.0f, 0.0f ) }, { XMFLOAT3( -1.0f, 1.0f, 1.0f ), XMFLOAT3( 0.0f, 1.0f, 0.0f ) }, { XMFLOAT3( -1.0f, -1.0f, -1.0f ), XMFLOAT3( 0.0f, -1.0f, 0.0f ) }, { XMFLOAT3( 1.0f, -1.0f, -1.0f ), XMFLOAT3( 0.0f, -1.0f, 0.0f ) }, { XMFLOAT3( 1.0f, -1.0f, 1.0f ), XMFLOAT3( 0.0f, -1.0f, 0.0f ) }, { XMFLOAT3( -1.0f, -1.0f, 1.0f ), XMFLOAT3( 0.0f, -1.0f, 0.0f ) }, { XMFLOAT3( -1.0f, -1.0f, 1.0f ), XMFLOAT3( -1.0f, 0.0f, 0.0f ) }, { XMFLOAT3( -1.0f, -1.0f, -1.0f ), XMFLOAT3( -1.0f, 0.0f, 0.0f ) }, { XMFLOAT3( -1.0f, 1.0f, -1.0f ), XMFLOAT3( -1.0f, 0.0f, 0.0f ) }, { XMFLOAT3( -1.0f, 1.0f, 1.0f ), XMFLOAT3( -1.0f, 0.0f, 0.0f ) }, { XMFLOAT3( 1.0f, -1.0f, 1.0f ), XMFLOAT3( 1.0f, 0.0f, 0.0f ) }, { XMFLOAT3( 1.0f, -1.0f, -1.0f ), XMFLOAT3( 1.0f, 0.0f, 0.0f ) }, { XMFLOAT3( 1.0f, 1.0f, -1.0f ), XMFLOAT3( 1.0f, 0.0f, 0.0f ) }, { XMFLOAT3( 1.0f, 1.0f, 1.0f ), XMFLOAT3( 1.0f, 0.0f, 0.0f ) }, { XMFLOAT3( -1.0f, -1.0f, -1.0f ), XMFLOAT3( 0.0f, 0.0f, -1.0f ) }, { XMFLOAT3( 1.0f, -1.0f, -1.0f ), XMFLOAT3( 0.0f, 0.0f, -1.0f ) }, { XMFLOAT3( 1.0f, 1.0f, -1.0f ), XMFLOAT3( 0.0f, 0.0f, -1.0f ) }, { XMFLOAT3( -1.0f, 1.0f, -1.0f ), XMFLOAT3( 0.0f, 0.0f, -1.0f ) }, { XMFLOAT3( -1.0f, -1.0f, 1.0f ), XMFLOAT3( 0.0f, 0.0f, 1.0f ) }, { XMFLOAT3( 1.0f, -1.0f, 1.0f ), XMFLOAT3( 0.0f, 0.0f, 1.0f ) }, { XMFLOAT3( 1.0f, 1.0f, 1.0f ), XMFLOAT3( 0.0f, 0.0f, 1.0f ) }, { XMFLOAT3( -1.0f, 1.0f, 1.0f ), XMFLOAT3( 0.0f, 0.0f, 1.0f ) }, }; D3D11_BUFFER_DESC bd; ZeroMemory( &bd, sizeof(bd) ); bd.Usage = D3D11_USAGE_DEFAULT; bd.ByteWidth = sizeof( SimpleVertex ) * 24; bd.BindFlags = D3D11_BIND_VERTEX_BUFFER; bd.CPUAccessFlags = 0; D3D11_SUBRESOURCE_DATA InitData; ZeroMemory( &InitData, sizeof(InitData) ); InitData.pSysMem = vertices; hr = g_pd3dDevice->CreateBuffer( &bd, &InitData, &g_pVertexBuffer ); if( FAILED( hr ) ) return hr; // Set vertex buffer UINT stride = sizeof( SimpleVertex ); UINT offset = 0; g_pImmediateContext->IASetVertexBuffers( 0, 1, &g_pVertexBuffer, &stride, &offset ); // Create index buffer WORD indices[] = { 3,1,0, 2,1,3, 6,4,5, 7,4,6, 11,9,8, 10,9,11, 14,12,13, 15,12,14, 19,17,16, 18,17,19, 22,20,21, 23,20,22 }; bd.Usage = D3D11_USAGE_DEFAULT; bd.ByteWidth = sizeof( WORD ) * 36; // 36 vertices needed for 12 triangles in a triangle list bd.BindFlags = D3D11_BIND_INDEX_BUFFER; bd.CPUAccessFlags = 0; InitData.pSysMem = indices; hr = g_pd3dDevice->CreateBuffer( &bd, &InitData, &g_pIndexBuffer ); if( FAILED( hr ) ) return hr; // Set index buffer g_pImmediateContext->IASetIndexBuffer( g_pIndexBuffer, DXGI_FORMAT_R16_UINT, 0 ); // Set primitive topology g_pImmediateContext->IASetPrimitiveTopology( D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST ); // Create the constant buffer bd.Usage = D3D11_USAGE_DEFAULT; bd.ByteWidth = sizeof(ConstantBuffer); bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER; bd.CPUAccessFlags = 0; hr = g_pd3dDevice->CreateBuffer( &bd, NULL, &g_pConstantBuffer ); if( FAILED( hr ) ) return hr; // Initialize the world matrices g_World = XMMatrixIdentity(); // Initialize the view matrix XMVECTOR Eye = XMVectorSet( 0.0f, 4.0f, -10.0f, 0.0f ); XMVECTOR At = XMVectorSet( 0.0f, 1.0f, 0.0f, 0.0f ); XMVECTOR Up = XMVectorSet( 0.0f, 1.0f, 0.0f, 0.0f ); g_View = XMMatrixLookAtLH( Eye, At, Up ); // Initialize the projection matrix g_Projection = XMMatrixPerspectiveFovLH( XM_PIDIV4, width / (FLOAT)height, 0.01f, 100.0f ); return S_OK; } //-------------------------------------------------------------------------------------- // Clean up the objects we've created //-------------------------------------------------------------------------------------- void CleanupDevice() { if( g_pImmediateContext ) g_pImmediateContext->ClearState(); if( g_pConstantBuffer ) g_pConstantBuffer->Release(); if( g_pVertexBuffer ) g_pVertexBuffer->Release(); if( g_pIndexBuffer ) g_pIndexBuffer->Release(); if( g_pVertexLayout ) g_pVertexLayout->Release(); if( g_pVertexShader ) g_pVertexShader->Release(); if( g_pPixelShaderSolid ) g_pPixelShaderSolid->Release(); if( g_pPixelShader ) g_pPixelShader->Release(); if( g_pDepthStencil ) g_pDepthStencil->Release(); if( g_pDepthStencilView ) g_pDepthStencilView->Release(); if( g_pRenderTargetView ) g_pRenderTargetView->Release(); if( g_pSwapChain ) g_pSwapChain->Release(); if( g_pImmediateContext ) g_pImmediateContext->Release(); if( g_pd3dDevice ) g_pd3dDevice->Release(); } //-------------------------------------------------------------------------------------- // Called every time the application receives a message //-------------------------------------------------------------------------------------- LRESULT CALLBACK WndProc( HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam ) { PAINTSTRUCT ps; HDC hdc; switch( message ) { case WM_PAINT: hdc = BeginPaint( hWnd, &ps ); EndPaint( hWnd, &ps ); break; case WM_DESTROY: PostQuitMessage( 0 ); break; default: return DefWindowProc( hWnd, message, wParam, lParam ); } return 0; } //-------------------------------------------------------------------------------------- // Render a frame //-------------------------------------------------------------------------------------- void Render() { // Update our time static float t = 0.0f; if( g_driverType == D3D_DRIVER_TYPE_REFERENCE ) { t += ( float )XM_PI * 0.0125f; } else { static DWORD dwTimeStart = 0; DWORD dwTimeCur = GetTickCount(); if( dwTimeStart == 0 ) dwTimeStart = dwTimeCur; t = ( dwTimeCur - dwTimeStart ) / 1000.0f; } // Rotate cube around the origin g_World = XMMatrixRotationY( t ); // 设置光源参数 XMFLOAT4 vLightDirs[2] = { XMFLOAT4( -0.577f, 0.577f, -0.577f, 1.0f ), XMFLOAT4( 0.0f, 0.0f, -1.0f, 1.0f ), }; XMFLOAT4 vLightColors[2] = { XMFLOAT4( 0.5f, 0.5f, 0.5f, 1.0f ), XMFLOAT4( 0.5f, 0.0f, 0.0f, 1.0f ) }; // 使第2个光源绕原点旋转 XMMATRIX mRotate = XMMatrixRotationY( -2.0f * t ); XMVECTOR vLightDir = XMLoadFloat4( &vLightDirs[1] ); vLightDir = XMVector3Transform( vLightDir, mRotate ); XMStoreFloat4( &vLightDirs[1], vLightDir ); // // Clear the back buffer // float ClearColor[4] = { 0.0f, 0.125f, 0.3f, 1.0f }; // red, green, blue, alpha g_pImmediateContext->ClearRenderTargetView( g_pRenderTargetView, ClearColor ); // // Clear the depth buffer to 1.0 (max depth) // g_pImmediateContext->ClearDepthStencilView( g_pDepthStencilView, D3D11_CLEAR_DEPTH, 1.0f, 0 ); // // 更新矩阵和光源变量 // ConstantBuffer cb1; cb1.mWorld = XMMatrixTranspose( g_World ); cb1.mView = XMMatrixTranspose( g_View ); cb1.mProjection = XMMatrixTranspose( g_Projection ); cb1.vLightDir[0] = vLightDirs[0]; cb1.vLightDir[1] = vLightDirs[1]; cb1.vLightColor[0] = vLightColors[0]; cb1.vLightColor[1] = vLightColors[1]; cb1.vOutputColor = XMFLOAT4(0, 0, 0, 0); g_pImmediateContext->UpdateSubresource( g_pConstantBuffer, 0, NULL, &cb1, 0, 0 ); // // 绘制立方体 // g_pImmediateContext->VSSetShader( g_pVertexShader, NULL, 0 ); g_pImmediateContext->VSSetConstantBuffers( 0, 1, &g_pConstantBuffer ); g_pImmediateContext->PSSetShader( g_pPixelShader, NULL, 0 ); g_pImmediateContext->PSSetConstantBuffers( 0, 1, &g_pConstantBuffer ); g_pImmediateContext->DrawIndexed( 36, 0, 0 ); // // 绘制两个光源 // for( int m = 0; m < 2; m++ ) { XMMATRIX mLight = XMMatrixTranslationFromVector( 5.0f * XMLoadFloat4( &vLightDirs[m] ) ); XMMATRIX mLightScale = XMMatrixScaling( 0.2f, 0.2f, 0.2f ); mLight = mLightScale * mLight; // 更新世界矩阵to reflect the current light cb1.mWorld = XMMatrixTranspose( mLight ); cb1.vOutputColor = vLightColors[m]; g_pImmediateContext->UpdateSubresource( g_pConstantBuffer, 0, NULL, &cb1, 0, 0 ); g_pImmediateContext->PSSetShader( g_pPixelShaderSolid, NULL, 0 ); g_pImmediateContext->DrawIndexed( 36, 0, 0 ); } // // Present our back buffer to our front buffer // g_pSwapChain->Present( 0, 0 ); }文件下载(已下载 1239 次)
发布时间:2012/7/8 上午9:11:13 阅读次数:7852