第一章 第3节 动量守恒定律
问题?
第一节中我们通过分析一辆运动的小车碰撞一辆静止的小车,得出碰撞前后两小车的动量之和不变的结论。对于冰壶等物体的碰撞也是这样的吗?怎样证明这一结论呢?这是一个普遍的规律吗?
动量定理给出了单个物体在一个过程中所受力的冲量与它在这个过程始末的动量变化量的关系,即 FΔt = p′ − p。如果我们用动量定理分别研究两个相互作用的物体,会有新的收获吗?
相互作用的两个物体的动量改变
如图 1.3-1,在光滑水平桌面上做匀速运动的两个物体 A、B,质量分别是 m1 和 m2,沿同一直线向同一方向运动,速度分别是 v1 和 v2,v2 > v1。当 B 追上 A 时发生碰撞。碰撞后 A、B 的速度分别是 v1′ 和 v2′。碰撞过程中 A 所受 B 对它的作用力是 F1,B 所受 A 对它的作用力是 F2。碰撞时,两物体之间力的作用时间很短,用 Δt 表示。
根据动量定理,物体 A 动量的变化量等于它所受作用力 F1 的冲量,即
F1Δt = m1v1′ − m1v1
物体 B 动量的变化量等于它所受作用力 F2 的冲量,即
F2Δt = m2v2′ − m2v2
根据牛顿第三定律 F1 = − F2,两个物体碰撞过程中的每个时刻相互作用力 F1 与 F2 大小相等、方向相反,故有
m1v1′ − m1v1 = −(m2v2′ − m2v2)
m1v1′ + m2v2′ = m1v1 + m2v2 (1)
这说明,两物体碰撞后的动量之和等于碰撞前的动量之和,并且该关系式对过程中的任意两时刻的状态都适用。
那么,碰撞前后满足动量之和不变的两个物体的受力情况是怎样的呢?两物体各自既受到对方的作用力,同时又受到重力和桌面的支持力,重力和支持力是一对平衡力。两个碰撞的物体在所受外部对它们的作用力的矢量和为 0 的情况下动量守恒。
动量守恒定律
一般而言,碰撞、爆炸等现象的研究对象是两个(或多个)物体。我们把由两个(或多个)相互作用的物体构成的整体叫作一个力学系统,简称系统(system)。例如,研究炸弹的爆炸时,它的所有碎片及产生的燃气构成的整个系统是研究对象。
系统中物体间的作用力,叫作内力(internal force)。系统以外的物体施加给系统内物体的力,叫作外力(external force)。
理论和实验都表明:如果一个系统不受外力,或者所受外力的矢量和为 0,这个系统的总动量保持不变。这就是动量守恒定律(law of conservation of momentum)。
思考与讨论
如图 1.3-2,静止的两辆小车用细线相连,中间有一个压缩了的轻质弹簧。烧断细线后,由于弹力的作用,两辆小车分别向左、右运动,它们都获得了动量,它们的总动量是否增加了?
【例题 1】
如图1.3-3,在列车编组站里,一辆质量为1.8×104 kg的货车在平直轨道上以 2 m/s 的速度运动,碰上一辆质量为 2.2×104 kg的静止的货车,它们碰撞后结合在一起继续运动。求货车碰撞后运动的速度。
分析 两辆货车在碰撞过程中发生相互作用,将它们看成一个系统,这个系统是我们的研究对象。系统所受的外力有:重力、地面支持力和摩擦力。重力与支持力之和等于 0,摩擦力远小于系统的内力,可以忽略。因此,可以认为碰撞过程中系统所受外力的矢量和为 0,动量守恒。
为了应用动量守恒定律解决这个问题,需要确定碰撞前后的动量。
解 已知 m1 =1.8×104 kg,m2 =2.2×104 kg。沿碰撞前货车运动的方向建立坐标轴(图1.3-3),有 v1 = 2 m/s。设两车结合后的速度为 v。两车碰撞前的总动量为
p = m1v1
碰撞后的总动量为
p′ =(m1 + m2)v
根据动量守恒定律可得
(m1 + m2)v = m1v1
解出
\[\begin{array}{l}v = \frac{{{m_1}{v_1}}}{{{m_1} + {m_2}}}\\ = \frac{{1.8 \times {{10}^4} \times 2}}{{1.8 \times {{10}^4} + 2.2 \times {{10}^4}}}\;{\rm{m/s}}\\ = 0.9\;{\rm{m/s}}\end{array}\]
两车结合后速度的大小是0.9 m/s;v 是正值,表示两车结合后仍然沿坐标轴的方向运动,即仍然向右运动。
【例题2】
一枚在空中飞行的火箭质量为 m,在某时刻的速度为 v,方向水平,燃料即将耗尽。此时,火箭突然炸裂成两块(图1.3-4),其中质量为 m1 的一块沿着与 v 相反的方向飞去,速度为 v1。求炸裂后另一块的速度 v2。
分析 炸裂前,可以认为火箭是由质量为 m1 和(m – m1)的两部分组成。考虑到燃料几乎用完,火箭的炸裂过程可以看作炸裂的两部分相互作用的过程。这两部分组成的系统是我们的研究对象。
在炸裂过程中,火箭受到重力的作用,所受外力的矢量和不为 0,但是所受的重力远小于爆炸时的作用力,所以可以认为系统满足动量守恒定律的条件。
解 火箭炸裂前的总动量为
p = mv
炸裂后的总动量为
p′ = m1v1 + (m – m1)v2
物体炸裂时一般不会正好分成两块,也不会正好沿水平方向飞行,这里对问题进行了简化处理。
根据动量守恒定律可得
m1v1 +(m – m1)v2 = mv
解出
\[{v_2} = \frac{{mv - {m_1}{v_1}}}{{m - {m_1}}}\]
解题时涉及的速度,都是相对于地面的速度。
若沿炸裂前速度 v 的方向建立坐标轴,v 为正值;v1 与 v 的方向相反,v1 为负值。此外,一定有 m – m1 > 0。于是,由上式可知,v2 应为正值。这表示质量为(m – m1)的那部分沿着与坐标轴相同的方向,即沿着原来的方向飞去。这个结论容易理解。炸裂的一部分沿着与原来速度相反的方向飞去,另一部分不会也沿着这个方向飞去,否则,炸裂后的总动量将与炸裂前的总动量方向相反,动量就不可能守恒了。
动量守恒定律的普适性
既然许多问题可以通过牛顿运动定律解决,为什么还要研究动量守恒定律?
用牛顿运动定律解决问题要涉及整个过程中的力。在实际过程中,往往涉及多个力,力随时间变化的规律也可能很复杂,使得问题难以求解。但是,动量守恒定律只涉及过程始末两个状态,与过程中力的细节无关。这样,问题往往能大大简化。
事实上,动量守恒定律的适用范围非常广泛。近代物理的研究对象已经扩展到我们直接经验所不熟悉的高速(接近光速)、微观(小到分子、原子的尺度)领域。研究表明,在这些领域,牛顿运动定律不再适用,而动量守恒定律仍然正确。
练习与应用
1.甲、乙两人静止在光滑的冰面上,甲推乙后,两人向相反方向滑去(图 1.3-5)。在甲推乙之前,两人的总动量为 0 ;甲推乙后,两人都有了动量,总动量还等于 0 吗?已知甲的质量为 45 kg,乙的质量为 50 kg,甲的速率与乙的速率之比是多大?
参考解答:总动量等于0;10∶9
2.在光滑水平面上,A、B 两个物体在同一直线上沿同一方向运动,A 的质量是 5 kg,速度是 9 m/s,B 的质量是 2 kg,速度是 6 m/s。A从后面追上 B,它们相互作用一段时间后,B 的速度增大为 10 m/s,方向不变,这时 A 的速度是多大?方向如何?
参考解答:A 物体的速度大小为 7.4 m/s,方向与初速度方向相同。
3.质量是 10 g 的子弹,以 300 m/s 的速度射入质量是 24 g、静止在光滑水平桌面上的木块。
(1)如果子弹留在木块中,木块运动的速度是多大?
(2)如果子弹把木块打穿,子弹穿过后的速度为 100 m/s,这时木块的速度又是多大?
参考解答:(1)88.2 m/s;(2)83.3 m/s
4.某机车以 0.4 m/s 的速度驶向停在铁轨上的 7 节车厢,与它们对接。机车与第一节车厢相碰后,它们连在一起具有一个共同的速度,紧接着又与第二节车厢相碰,就这样,直至碰上最后一节车厢。设机车和车厢的质量都相等,求:与最后一节车厢碰撞后车厢的速度。铁轨的摩擦忽略不计。
参考解答:0.05 m/s
5.甲、乙两个物体沿同一直线相向运动,甲物体的速度是 6 m/s,乙物体的速度是 2 m/s。碰撞后两物体都沿各自原方向的反方向运动,速度都是 4 m/s。求甲、乙两物体的质量之比。
参考解答:3∶5
6.细线下吊着一个质量为 m1 的静止沙袋,沙袋到细线上端悬挂点的距离为 l。一颗质量为 m 的子弹水平射入沙袋并留在沙袋中,随沙袋一起摆动。已知沙袋摆动时摆线的最大偏角是 θ,求子弹射入沙袋前的速度。
参考解答:v0 = \(\frac{{m + {m_1}}}{m}\sqrt {2gl(1 - \cos \theta )} \)
文件下载(已下载 85 次)发布时间:2022/7/1 下午9:02:25 阅读次数:2691