18.6 着色器代码
我们将法线贴图映射的一般处理过程总结如下:
1.使用某个绘图软件或工具软件创建法线贴图,并保存为图像文件。当程序初始化时,从这些文件创建2D纹理。
2.为每个三角形计算切线向量T。在网格中,顶点v的切线向量等于共享该顶点的每个三角形的切线向量的平均值。(在我们的演示程序中,我们为简单几何体直接指定切线向量,为那些从3D建模软件导出的复杂三角形网格计算平均值。)
3.在顶点着色器中将顶点的法线向量和切线向量变换到世界空间,然后将结果输出到像素着色器。
4.使用插值后的切线向量和法线向量,为三角形表面上的每个像素点生成TBN基。使用TBN基,将从法线贴图采样得到的法线向量从切线空间变换到世界空间。最后将法线向量用于光照计算。
要实现法线法线贴图映射,我们需要在lighthelper.fx中添加以下函数:
//------------------------------------------------------------------------------------- // 将法线贴图的采样值转换到世界空间. //------------------------------------------------------------------------------------- float3 NormalSampleToWorldSpace(float3 normalMapSample, float3 unitNormalW, float3 tangentW) { // 将每个分量从[0,1]解压到[-1,1]. float3 normalT = 2.0f*normalMapSample - 1.0f; // 创建TBN基. float3 N = unitNormalW; float3 T = normalize(tangentW - dot(tangentW, N)*N); float3 B = cross(N, T); float3x3 TBN = float3x3(T, B, N); // 从切线空间转换到世界空间. float3 bumpedNormalW = mul(normalT, TBN); return bumpedNormalW; }
这个函数在像素着色器中的使用方法如下:
float3 normalMapSample = gNormalMap.Sample(samLinear, pin.Tex).rgb; float3 bumpedNormalW = NormalSampleToWorldSpace(normalMapSample, pin.NormalW, pin.TangentW);
这里有两行代码需要特别说明一下:
float3 N = unitNormalW; float3 T = normalize(tangentW - dot(tangentW, N)*N);
在插值之后,切线向量和法线向量可能不再相互垂直。这两行代码的用途是通过从T中减去偏向于N的部分(见图18.6),使T重新垂直于N。注意,我们假设unitNormalW已被规范化。
在从法线贴图中获取了法线之后,就可以将它用在所有包含法线向量的计算中(即,光照、立方贴图映射)。我们将整个法线贴图映射的effect代码都列了出来。
#include "LightHelper.fx" cbuffer cbPerFrame { DirectionalLight gDirLights[3]; float3 gEyePosW; float gFogStart; float gFogRange; float4 gFogColor; }; cbuffer cbPerObject { float4x4 gWorld; float4x4 gWorldInvTranspose; float4x4 gWorldViewProj; float4x4 gTexTransform; Material gMaterial; }; // Nonnumeric values cannot be added to a cbuffer. Texture2D gDiffuseMap; Texture2D gNormalMap; TextureCube gCubeMap; SamplerState samLinear { Filter = MIN_MAG_MIP_LINEAR; AddressU = WRAP; AddressV = WRAP; }; struct VertexIn { float3 PosL : POSITION; float3 NormalL : NORMAL; float2 Tex : TEXCOORD; float3 TangentL : TANGENT; }; struct VertexOut { float4 PosH : SV_POSITION; float3 PosW : POSITION; float3 NormalW : NORMAL; float3 TangentW : TANGENT; float2 Tex : TEXCOORD; }; VertexOut VS(VertexIn vin) { VertexOut vout; // Transform to world space space. vout.PosW = mul(float4(vin.PosL, 1.0f), gWorld).xyz; vout.NormalW = mul(vin.NormalL, (float3x3)gWorldInvTranspose); vout.TangentW = mul(vin.TangentL, (float3x3)gWorld); // Transform to homogeneous clip space. vout.PosH = mul(float4(vin.PosL, 1.0f), gWorldViewProj); // Output vertex attributes for interpolation across triangle. vout.Tex = mul(float4(vin.Tex, 0.0f, 1.0f), gTexTransform).xy; return vout; } float4 PS(VertexOut pin, uniform int gLightCount, uniform bool gUseTexure, uniform bool gAlphaClip, uniform bool gFogEnabled, uniform bool gReflectionEnabled) : SV_Target { // Interpolating normal can unnormalize it, so normalize it. pin.NormalW = normalize(pin.NormalW); // The toEye vector is used in lighting. float3 toEye = gEyePosW - pin.PosW; // Cache the distance to the eye from this surface point. float distToEye = length(toEye); // Normalize. toEye /= distToEye; // Default to multiplicative identity. float4 texColor = float4(1, 1, 1, 1); if(gUseTexure) { // Sample texture. texColor = gDiffuseMap.Sample( samLinear, pin.Tex ); if(gAlphaClip) { // Discard pixel if texture alpha < 0.1. Note that we do this // test as soon as possible so that we can potentially exit the shader // early, thereby skipping the rest of the shader code. clip(texColor.a - 0.1f); } } // // 法线映射 // float3 normalMapSample = gNormalMap.Sample(samLinear, pin.Tex).rgb; float3 bumpedNormalW = NormalSampleToWorldSpace(normalMapSample, pin.NormalW, pin.TangentW); // // Lighting. // float4 litColor = texColor; if( gLightCount > 0 ) { // Start with a sum of zero. float4 ambient = float4(0.0f, 0.0f, 0.0f, 0.0f); float4 diffuse = float4(0.0f, 0.0f, 0.0f, 0.0f); float4 spec = float4(0.0f, 0.0f, 0.0f, 0.0f); // Sum the light contribution from each light source. [unroll] for(int i = 0; i < gLightCount; ++i) { float4 A, D, S; ComputeDirectionalLight(gMaterial, gDirLights[i], bumpedNormalW, toEye, A, D, S); ambient += A; diffuse += D; spec += S; } litColor = texColor*(ambient + diffuse) + spec; if( gReflectionEnabled ) { float3 incident = -toEye; float3 reflectionVector = reflect(incident, bumpedNormalW); float4 reflectionColor = gCubeMap.Sample(samLinear, reflectionVector); litColor += gMaterial.Reflect*reflectionColor; } } // // Fogging // if( gFogEnabled ) { float fogLerp = saturate( (distToEye - gFogStart) / gFogRange ); // Blend the fog color and the lit color. litColor = lerp(litColor, gFogColor, fogLerp); } // Common to take alpha from diffuse material and texture. litColor.a = gMaterial.Diffuse.a * texColor.a; return litColor; }文件下载(已下载 939 次)
发布时间:2014/8/24 下午3:56:47 阅读次数:4173