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ABSTRACT

In this paper | describe various reame water rendering approaches using the
graphics hardware. Not only is the scientific backgroupdesented, but the
advantages and disadvantages of the different solutions asTivelkey optical
characteristics of water are reflection and refractiohlithough, he complex
optical behavior and physical interactions can be calculated absolutely
accum t e, the computational capacity c
optimal compromise between realism and accuracy can be different depending
on the target platform and required result. | present a wide range from
completelysimple to incredibly conlex alternatives which can be basfier
interactive water rendering. The most commonly used approaches are based ol
Perlin noise, Fast Fourier Transformations, Navietokes Equations or on
Particle SystemThe two demo applications try to demonstratentiaén ideas.

Keywords

Water mathematics, Water shaddgraphics hardwareHLSL, Optical effects,
Reflection, Refraction, Critical angle, Fresnel term, Surface waves, Gerstner waves
Gird, Projection, Fast Fourier TransformatioNavierStokes equation$ixel shader,
Vertex Shader, Level of Detall
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1 INTRODUCTION

Innovation is perhaps the most significant in the computer world, especially
among the different kindf graphics cards. The brandweshader technologies
made several techniques possible whieltame basis of new water rendering
technigues in movies, computer games and other kind of terrain creation. Thes
new water simulations make the virtuahlities more and more alive.

To render realistic water surfaces three components need to be adidresse

e Representation of the water
e Optical behavior
e \Wave motion

These components absolutely depend on each dthersolutions for optical
behavior and wave motion simulation can be selected depending on the wate
representation after taking into account pussible approaches and the desired
result as well.

The first attempts of water rendering were visually not too convincisg
computational power of the CPWgs much more limited than today, and no
graphics card existed with 3D suppo8ince that, the wolution of GPUs
introduced numerous innovations which not only boostedalsaichanged the
rendering methodsl h o u g h, todayos (CeRplbgatioa oftee mu
parallel computation methoof the GPUs instead of using the Clean result
much morerealistic realtime animations.

One of the first key points irthe water rendering literaturavas Jerry
Tessendorf: Simulating Ocean Wa(2001).His approach combined a complex
water representation and a practical ocean wave algorithm. The resultbguliblis

in that paper weraused several times later, for example, DeepWater
Animation and Rendering(2001) by Jensen and Robert Golias. They
demonstrated the application of another wave simulation method (based on Fa:
Fourier Transformations) and discussed several smaller ingredients of natura
water rendering as well. New approaches were publishednteractive
Animation of Ocean Wavdg2002) by Damien Hinsinger, Fagrice Neyret and
Marie-Paule Caniand inRealTime Water Renderinig Projected Grid Concept
(2004)by Claes Johanson as wélheir techniques and optimizations reduce the
necessary computations aedhance the redime visual results by this. The
latest games and other graphics applications are really convincing, they car
create extremely spectacular water scenlks.only drawback is that, because of
commer ci al reasons, ts lofetheir tdcbnigdesin thpeu b |
following chapters | will discuss the basics of the latest water rendering
approaches which can be extended to realistic water rendering under divers
conditions.
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In chapter 2, | try to summarize the main scientific lageuations and methods
which are the most important for water renderii@hapter 3 attempts to
introduce the basics of the graphiesdware focusing its operatimgethod The

most commonly used alternative approacfuesreattime water renderingre
described in chapter 4, ranging from basic and simple metimodstremely
complex solutionsChapter 5 and 6 describes the steps | used in my demo
applications: one of them is a lake water shader, the other focuses on ocea
waves.

| encourage you toheck the homepage of this project and comment the articles
as well. Also several animations, numerous sced®ts and lots of references
can be found on the sitkttp://habibs.wordpress.com.
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2 WATER MATHEMATICS

2.1 Introduction

You have seen mamgifferent kinds of water in your life already, but not everyone knows
what makes natural water look realistic. Different natural water types have several properties
in common but they are absolutely different in others. The key ingredients of natura water
are:

« Reflecting the objects visible above the surface

« Refracting the objects under the surface

o Multiple reflections and refractions

« Appropriate ratio between reflection and refraction: the Fresnel term

o Color modification, dirtier waterwaterfog

e Moving surface various kind of wave motion

e Specular reflection

o Deep water phenomena including caustics, spray, Godrays, foam and the Kelvin
wedge

2.2 Optical Effects of Water Surfaces
2.2.1 Reflection

Reflection is the phenomena when the wave front changes directioniaterface between

two different media, in the way that the wave front returns into the medium from which it
originated. In some aspects the surface of the water acts like a perfect mirror. Electromagneti
waves of light are reflected on the surfacee Tiysical law for this: the angle of reflection
equals the angle of incidence, and we measure these angles to the-vaatorabf the
surface, namely the two angléandb are equalas shown oRigure2-1:

Figure 2-1: The law of reflection . The angle of incident
(A) and reflectance (é) are equal.

Taking into consideration only the reflection behavior of the water it is easy to calculate the
color of the pixels on the water surface. Mirroring the position of the camera to the plane of
the surface gives the exact location of the virtual view: justrdene which color has the
object which is visible through every pixel of the water from the virtual view. This idea is
visualizedon Figure2-2:
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X i_- 22 7 . \Water surface

Figure 2-2: Getting the reflected colors on the water
surface.

If the camera is in point A, the perceived color on the water surface will be the color of the
object visible from point B through the same intersection point. Point B is exactly the same
far from the plane of thevater as point At he t wo di stances are ma
figure.

2.2.2 Refraction

The speed of electromagnetic waves is different in different media. The change happeninc
when it passes from one medium to another causes the phenomenon of nefractb h e S n
law (named after the Dutch mathematicMhllebrord Snelliu3 describes the relationship
between the angle of incidence and refraction: the ratio betiveanis a constant depending

on the media or more exactly the ratio of the sines of the angles equals the ratio of velocitie:
in the two mediar equals the opposite ratio of the refraction indices of the media

smfb; vy ng

sinfl, vy 1y
or
S, = nosméby .
Where Vs are the velocities, Nsdarehe refracti on i ndiiccelenceand

and refractionThese angles are measured in respect to the nesor of the boundary
between the two media.

According to this law the direction of the wave can be refracted towards or from the normal
line, depending on the relative refractimlices of the medi&igure2-3 shows an example:

10


http://en.wikipedia.org/wiki/Willebrord_Snellius
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interface

Q
Figure 2-3: T h e S n.dnlthis dase tHe aelocity

is lower in the second medium (V2<V1), the ray in
the second medium is closer to the normal-line.

For our intended use, we need the values of these indices for only two matéraiadex of
refraction for air is 1, for water is 4/3.

2.2.3 The Third D imension

The previously discussed examples and definitions were onhditwensional, but for the

real world, everything needs to be formed into 3D. The following equations describe the
direction after refraction in 3D. For explanation, see [MFGD]. 4 be the inoming ray of

light (vector),t the transformed ray of lighhy the normalv e ct or of ;ahé@areg ur f
the velocity indices. The transformed vector has two components: one parallel and one
perpendicular to. This can be written in the following rim:

t =-n cos(h) + m sin(d)

To calculate the two coefficients, we need to use the fact that only the angle along the surface
changes, and not the entire directioncan be defined as follows:

m=perps/ s)=s{(@As)n/ s n( d

Using theprevious equations [MFGD] described the following result:

2

m 3

n,

t=-—n| [1-

—nos2 —n—'nos —sl
(1-(nes)’) 4 Lmes) [-s 2

This equation contains the possibility to have negative square root, which means that the
equation is not defined for every angles and coefficients. The physical reason for this is
described in té following paragraph.

2.2.4 Critical Angle

There is one more important phenomenon that | need to mention in connection with
refraction. If the light is coming from a media with lower velocity, the angle will change from
the normal, so the angle between the radramd the beam will be bigger in the target media.
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This means that to get 90 degree in the target medium a smaller angle is enough in the sour
medium. This specific angle is called critical angle. The critical and any higher angle results a
refraction \ector which is parallel to the surface of the media. If this happens, the wave will
be refracted along the border of the media, it will not intrude the target medium;chkesb

total internal reflection will occur. This critical angle is about 50 degae a wateair
boundary which is shown oifrigure2-4:

Reflection and Refraction Total Internal Reflection

O Air i

Water Water / !

/ /’

When the angle of modence aqual ‘When the angle of modence is

Figure 2-4: The critical angle
2.2.5 Multiple Reflection andRefraction

The light beams are reflected and refracted on the surface of the water, but to @ocertaih
transformedight beams meat the aivater border again and reflection and refraction happens
newly. This is illustrated oRigure2-5:

Incident
» Second

Reflection
First

Reflection

Second

First Refraction

Refraction

Figure 2-5: Multiple reflection and refraction.

2.2.6 The Reflection-Refraction Ratio: the Fresnd Term

The first two sections described reflection and refraction. They both happen to
electromagnetic waves on the border of different media likégure 2-6:



But how to get the accurate ratio between reflection and refraction? AugaatinFresnel
(/freld W/) worked out the laws of optics in the early 19th century. Hjgagons give the
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D, Air  Water
7
%
%,
0,5,
Normal
. R,
’\\é\ %cted /
& “Oht
o8’
Q_@

Figure 2-6: Both reflection and refraction happen on
media boundaries.

degree of reflectance and transmittance at the border of two media with different density.
Derivation of them is outside the scope of this paper.

The wave has two components: a parallel and a perpendiculer.tiie amplitude of the
incidentwave, and Ear e t he

transmittance.

amplitudes of

t= Et/Ei

For the pependicular component the equations are the following:

The next equations are showing the properties of the parallel components:

rr- = [nicos(di)T

nt s
t = [2nicos(di) ] n

r=[nic o9 (1€ a9nc o) ¢uicog](d
t=[2nic o 9J(nC 0 ) ¢ Kic o §]( d

The more elegant version of them are:

and

I'perpendicular =

rparallel = [ t @ n (t C@ I"] (/ qi)t atn @]rd( d

(d
i C

T[31T 80d( d)sHsnind d

t hej, radd | ec
d: are the angles between the surface normal and the beam of incidence, refraction an

t
o

)
s

]
(

/

qi

[
[

n
)

If the light is polarized to have only perpendicular poment, we call it $olarized.
Similarly, if it has only parallel components, it is callegp®larized. Figure 2-7 shows
example coefficients depending on the angles for both S and P polarized cases:

C
+

0]

s}
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n;=10, n,=2.0 n;=2.0, n,=1.0
100 : 100
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Figure 2-7: Example Fresnel ratios. As visible on
the figure, in case of moving from denser
medium to a less dense one (on the right), the
reflection coefficient is 1 above the critical angle.
This phenomenon is known as total internal
reflection, as mentioned earlier.

2.3 Moving Water
2.3.1 About Waves

Describingocean waves is a huge challenge. It has several different components and theil
cooperation results in a very complex system. Basically there are two different kinds of
mechanical wave motion: longitudinal and transverse. The direction of oscillationedtati

the wave motion distinguishes them. If the oscillation is parallel to the wave mbi®n
called longitudinal wave, as shown Bigure2-8:

Figure 2-8: Longitudinal wave

If the oscillation is perpendicular to the waweotion it is called transverseiave as
visualized orfFigure2-9:

Ihx'n of Energy Transport

Figure 2-9: Transverse waves

14
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Examples are, for example, sound wave in air for longitudinal waves and the motion of a
guitarstring if you play the guitar for transverse waves. For both kinds of veampbtudeis

the maxmum displacement of a wave from the equilibrium aval/elengthis the shortest
length between two points of the wave which are in the same-pease. Thdrequency
shows the number of wave cycles in a second. It is easy to calculate the speed of a wave frol
these data: wave speed equals the product of frequency and wavelength.

The blowing wind and gravity together forms theeae waves which propagate along the
surface of the water and air. This compound system has both longitudinal and transvers:
components and makes water particles move in a circular path. The closer to the surface

particle is, the bigger the radius of tmtions becomes. This kind of wave is called surface
wave and is illustratedn Figure2-10:

v

Figure 2-10: Surface waves.

At point A, where the water is deeper, the pahcircle, at pointB, where the water is
shallow, the path of the motion becomes elliptic with decreasing water depth. The#arrow

shows the direction of propagatiof#i2 shows the crest of the wav#3 shows the wave
trough.

The following equation desbes the dispersion relationship of the surface wafl@sniore
details, see [TSWHF]

. k3
w? = gk + L,
P
wherex is the angular frequency,is thegravitational acceleratiork is thewavenumber 2 i ¢

thesurface tensian a n d density SolvihgHfoey gives

3
w=4/gk+ r
p

2.3.2 Compound Systemsi Summation of Different Waves

The previously discussed theoretical background is enough to describe the motion of oceal
waves, but we need to use more components with different amplitudes and waveteggths
a more realistic resylas shown ofrigure2-11:


http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Frequency
http://scienceworld.wolfram.com/physics/GravitationalAcceleration.html
http://scienceworld.wolfram.com/physics/Wavenumber.html
http://scienceworld.wolfram.com/physics/SurfaceTension.html
http://scienceworld.wolfram.com/physics/Density.html
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Position [m]

Figure 2-11: Waves with different amplitudes and
wavelengths.

The sum of the components results the next veaveigure2-12:

Position [m]
Figure 2-12: Sum of waves.
In the treedimensional world different components have not only different amplitudes and

wavelength, but different directis as well. The dominant direction will be the one with
bigger amplitude and longer peridélgure2-13 shows three components:

S

Figure 2-13: Three-dimensional waves.

And the sum of the components can approximate the real ocean surface realigtey do
onFigure2-14:

Figure 2-14: Sum of three -dimensional waves.

16
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2.3.3 Gerstner Waves

A Czech scientist, Jozef Gerstner obtained the first exact solution describing water waves o
arbitrary amplitudes in 1802. His model also describes the cyclonidal movement of the

surface waves. In this model the water depth is large compared to the wgtle [Ehe
resulted curve is also called trachoid.

Displacements are defined with the following equations:

X = Xo-(k/kg) * Asin(k* Xp-¥t )
y=Acos(k*X-¥t)

whereXpis the undisturbed surface poiAtjs the wave amplitudé is the wave vector arkg
is the magnitude.

Gerstner waves become close to sinusoidal if the amplitudes are very small, but they break i

the amplitudes are biggeas visualized oRigure2-15:

Gerstner Wave Profiles
B Amplitede 0.5

Amplitude B Aoplitode | 8

B
S, 0 ey

Position

Figure 2-15: Gerstner waves with different amplitudes.

These qualities allow Gerstner waves to describe various surface waves under differen

conditions.

For more details, see [IAOOW] or [GW].

2.3.4 The Navier-StokesEquations

NavierStokes Equations (NSE) are nonlingartial differential equationand describe the
motion of incompressible viscose fluids. In NSE there are three typesce$ acting:

e Gravity:Fg= 3} G, where } is the density?and

e Pressure forcesThese forces act inwards and normal to the water surface.

e Viscose forcesThese are forces due to friction in the water and acts otratttions
on all elements of the water.

The time dependant chaotic, stochastic behavior of fluids is daltbdlence NavierStokes
equations are thought to describe the phenomena, luhdt answered yet, how to decide
whether smooth, physically reasonable solutions exist for the equations. Actla@iy0a000

(


http://en.wikipedia.org/wiki/Partial_differential_equations
http://en.wikipedia.org/wiki/Turbulence
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/

Water Mathematics VariousWater Phenomena

dollar prizeis offered to whoever makes preliminary progresgara a mathematical theory
which will help in the understanding of this phenomenon. Further discussion is outside the
scope of this paper. The Nawvigtokes equations are given by:

o dp

‘) Ju
(1) —u; + u L =pAu; — + filx. t) (reR".t >0),
ot ! Zl }(').r“ y dr Y ;
J= -

s 9 . du, /
(2) divu = —_— =) (reR".t >0)
— O -

with initial conditions

(3) w(z,0) = u’(x) (z e R").

Wher e, uU( xPdivergenceaee gectar field pn RGi(x, t) are the components of a
given, externally applied force (e.g. gr a\

is the Laplacian in the space variables. For more detail$Ns&teP] [FDfP] or read about an
implemented versionGQPUGEMS.

2.4 Various Water Phenomena
2.4.1 SpecularLights

Materials having a flat surfacg.g.: leather, glass and water also) present an interesting
phenomenon which | have not mentioned yet. There are several different reflection models.
some of them make the created image much more realistic while others help to improve the
smaller detailsOne of these in the second group is specular reflection.

Materials like sand have irregular, bumpy surface and this makes incoming light to be
reflected in every directions. This is shownFigure2-16:

Figure 2-16: Direction of the reflected beams.

But if the material has flat surface, the light waves will be parallel after reflection as well.
Because of this property shiny, bright spots will be formed for exampléhe leather, on
different metals or on the water if it is illuminated from a certain angle. The Phong
illumination model describes this in the way which is most commonly used in 3D computer
graphics. Phong Bui Tong developed his model in 1975 andtill igesy popular. According

to this model the intensity of point has three components: an ambient, a diffuse and a specule
component and the specular highlight is seen when the viewer is close to the direction o
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reflection. The intensity of this kind dight falls off sharply when the viewer moves away
from the direction of specular reflectiofrigure 2-17 shows the vectors for describing
specular highlights.

Figure 2-17: The vectors for describing specular

highlights. Vector L points towards the light -source,
V towards the viewer, N is the normal -vector of the
surface, R is the direction of reflection while H halves
the angle between L and V.

The approximation othe falloff of the intensity in the Phong model uses the power of the
cosine of the angle. The specular part of the original formula looks like this:
KspecCOS'( b )

whereD is the angle between R and Kecis the specular coefficient. The exponentan
influence the sharpness of the falloff. A bigger exponent can describe a shinier surface with
less gentle falloff. The dot product of two vectors equals the cosine of the angle between
them, so the formula can be written in the following form:

kspec(V}N)n
WherRe iis the dot product.

With the diffuse reflection model the Phong illumination model is the followingnéans
intensity):

| = I(ambient* |ambient+ (lp /(d)) [kdiffuse* ( N 'Rs!;ec)llar* + ( V/] A R )

Where Is are the different intensitiés,are the ambient, diffuse and specular coefficients, and
Ais the dot product. Namely, the intensity of a point is equal to the sum of the ambient light
intensity and the sum of the diffuse and specular intensity scaled to the distance of the light
source.

2.4.2 Caustics

A wavy water surface presents caustics: the light beams are refracted in very choppy
directions, the coincidence of rays intensifies, leading to very bright regions on every surface
under the wateas onFigure2-18:
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Figure 2-18: Caustics.

Formation of caustics is illustrated brgure2-19:

vortex
perturbing
water
surface
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Figure 2-19: Formation of caustics. Caustics are bright
regions where the light beams coincident

2.4.3 Godrays

The same physical effects which cause caustics can €edrays(described in [DWAaR]).

The changing water surface focuses and defocuses light rays. The small particles floating ir
the water can get into these focus points and become visible for a short period. The
continuously changing patterns created by thesetsfége called Godrays which are visible if

you are looking from underwater towards the light source. A rendered example is shown on
Figure2-20:
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Figure 2-20: Godrays. The image was created by the Typhoon engine. [TYPHOON]

2.4.4 Whitecapsand Foam

Breaking waves produce foam, and the scummy parts of the breaking waves are callec
whitecaps. According to [RNW], the area of whitecaps depends on the temperature of the
water andhe air and on water chemistry. They used an empirical formula to approximate the
fraction of the water covered by foam t hat

f=1.59 * 10° U**°exp[0.086 * (T, - Ta)]

Where f is the fractional area, I3 the wind speed, Jand T, are the water and air
temperature in degrees Celsius.

2.4.5 The Kelvin Wedge

On open water, moving ships generate waves. These waves cannot be in any reasonak
approximation treated as exclusively longitudinal. The phenomenon,othallsd Kelvin
wedge was first analyzed by Lord Kelvin. An ideal example is visualizédgune2-21:

Figure 2-21: Ideal form of the Kelvin wedge.
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The complicatedvave pattern behind a ship is influenced by the viscosity of the water, by the
moving directions, gravity, not to mention nbnear effects which become significant when

the amplitude is large. Stern waves and bow waves are superposed on one anotiar, and
infrequently, other wave systems may be discerned originating from somewhere between the
bow and stern. The fact, that the angle enclosed by the Kelvin wedge is independent of the
speed of the boot can be surprising, but the explanation is out afdpe sf this paper. For
more details, see [FDfP].
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3 SHADERS

3.1 Background

The only thing you need to create an image from a virtual world is the order a color to every
pixel on your display. This sounds easy, but for every pixel you need to determine which
object is visible (which object is the nearest from the covering onés, kind of light this
surface gets and you need to calculate the real color of this point from all different kind of
data, for instance the different angles (viewing angle, place of the light sources -vectoal

of the surface etc.) These calculatitrasve every mathematical background already, you just
have to implement them to get surprisingly realistic images very soon. Though, you can have
some difficulties if you want to use thesecledray-tracingtechniques for motion pictures
instead of still images. The main problem is that you want to order a color to every picture
through these steps very fast, but it is impossible to repeat this calculations for every row
(e.g.: 900) and very column (e.g.: 1440) of the image 30 times in a second to get a
continuous video which needs 900 x 1440 x 30 = 3,888,000 iterations in each second throug|
those time consuming mathematical operations. (The time is not an important factor if you do
not need continuous motion picture. For still images you can rely on any pptuoeacing
method.) To accomplish this challenge you need to use quicker alternatives, simplifications
and heuristics to make a compromise between faster calculations anckaistie images.

3.2 Tessellation of the Virtual World

Virtual worlds comprise different surfaces and every surface is formed by triangles. The
reason for this is that the most geometrical operations modify the base of the polygons, for
example they transform arce into anellipse a square into a different parallelogram.
Polygons can lose all of their original attributes this way which makes them change during
procedures and almost impossible teade them with simple mathematical elements. (For
instance, a circle can be described by a center point and a radgugjection transformst

into an ellipse, and you cannot describe the ellipse with a center point any more, it needs tc
use two fixedpoints: focus.) But if you carry out the same operations on triangles, the result
will be triangles and you will not lose the original form of the target. Hence, every
geometrical object igessellatedinto triangles (also called asiangulatior) and all the
procedures are carried out on these triangles, whose points arevealieels An example of
polygon triangulation is visible drigure:3-1:

Figure: 3-1. Tesselation example
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3.3 Shaders

Before DirectX 8.0 graphical processors were operating only a fixed processing pipeline
which limited the arsenal of every kind of rendering technique. The introduced
Aprogrammabl e pipelined added a new weap
essentihinnovation was the twshadersthe vertex shadeand thepixel shader The vertex
shader operates on every vertex of the virtual world whilgikel shadedoes the same for
every pixel.

Vertex shaders are run once for each vertex given to the graphics processor. They transforr
the 3D coordinates of the vertices to the 2D coordinates of the sdreey manipulate
properties such as position, color and texture coordinate, but cannot @eatertices. The
output of the vertex shader goes to the next stage of the pipeline.

Pixel shaders calculate the color of every pixel on the screen. The input to this stage come
from the rasterizer, which interpolates the values got from the verteerstmdbe able to
determine not only the color of vertexes but all the pixels as well. Pixel shaders are typically
used for scene lighting and related effects such as bump mapping and color toning.

The newly introducedeometry shadersan add and remove vertices from a mesh. (Objects

in the virtual world are formed by meshes.) Geometry shaders can be used to procedurall
generate geometry or to add volumetric detail to existieghes that would be t@xpensive

to calculateon the CPUfor reattime performancelf the geometry shader is present in the
pipeline, it is a stage between the vertex shader and the pixel sGadenetry shaders are
beyondthe scope of these articles.

Different DirectX versions and supportsldader versions are shownAppendixA.

3.4 The Actual Pipeline

To create an image on the screen, the CPU provides the necessary information of the object
coordinates, color and alpha channel values, texturesFeim these data the Graphical
Processing Unit (GPU) calculates the image through complex operations. The exact
architecture may vary by manufacturers and by GPU families as well, but the general ideas
are the same. The DirectX 10 pipeline stages to prododenage arevisualized onFigure

3-2:
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Memory Resources
(Buffer, Texture,
Caonstant Buffer)

Input-Assembler
Stage

Vertex-Shader
Stage

Geometry-Shader
Stage i

+| Stream-Output
Stage

z
Rasterizer
Stage

Fixel-Shader
Stage

Output-Merger
Stage

Figure 3-2. The graphical pipeline

1. InputAssembler Stage Gets the input data (the vertex information) of the virtual
world.

2. VertexShader Stage Transformsthe vertices to cameispace, lighting calculations,
optimizations etc.

3. GeometryShader StageFor limited transformation of the vertgeometry.

4. StreamOutput Stage Makes dataransport possible to the memory.

5. Rasterizer Stage The rasterizer is responsible for clipping primitives and preparing

primitives for the pixeshader.

PixelShader StageGenerates pixel data by interpolations.

OutputMerger Stage Comnbines various types of output data (pixel shader values,

depth and stencil information) to generate the final pipeline result.

N o

T o d a y-téch grdphic cards have only three programmable stages in order to reduce the
complexity of the GPUs. The vertex presig stage (Vertex shader) and the pixel processing
stage (Pixel shader) will be discussed here, for more details gbouietryshaders sefsS].

The two main application programming interfaces use different terms: pixel processing stage
and Pixel shader in DirectX aralted fragment processing stagad Fragment shader in
OpenGL, respectively.

The Vertex shder engine gets the vertex data as input and, after several operations, writes the
results in its output registers. The setup engine relays these data to the pixel shader engir
after setting the hardware amderpolation The pixel shader uses different kinds of registers
and textures as input and from this information produces the color of the pixels (fragments)
into the output register.

These shaders will be discussed in the nbapters in details.

3.5 The Vertex Shader

The first programmable pipeline stage is the Vertex shader which provides an assembly
language to define every necessary operations to bypass the original ones and to be able
create absolutely unique graphical etée With this freedom it is possible to perform lots of
operations including:
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e Texture generation

e Rendering particle systems (fog, cloud, fire, water etc.)
« Using procedural geometry (e.g.: cloth simulation)

« Using advanced lighting models

« Using advanced keframe interpolation

| wrote some words about surfaces in the virtual world in the previous chapters. Because o
mathematical reasons every surface is formed into triangles and operations are performed o
the points of these triangles, which are calledie®es. A vertex is a structure of data: position
(coordinates), color and alpha values, normal vector coordinates, texture coordinates etc. bt
other required information can be stored among these values as well.

Operations of the Vertex shader are exedute each vertex, so the shader program has
exactly one vertex as input and one vertex as output. The shader cannot change the number
the vertices: it cannot add or remove any of them, but it can change the coordinates, color o
other values to get udoser to the final picture. If the vertex shader is used, the following
parts of the fixed pipeline are bypassed:

« Transformation from world space to clipping space
« Normalization

o Lighting and materials

e Texture coordinate generation

Although the other parwsf the fixed pipeline of the vertex stage are executed:

e Primitive assembly
e Frustum culling

« Perspective division
e View-port mapping
« Backface culling

| introduce here the key features of Vertex Shader version atér i.ersions arbackward
compatible which means that everything defined énés correctand works well innewer
versions as well.

The Vertex shadeALU performs the real operationthé vertex shader of the Ati X1900 is
visualized orFigure3-3):

Vertex Data

128-bit 32-bit
Vector Scalar
ALU ALU

To
Setup

Engine Flow Control

Figure 3-3: The vertex shader ALU.
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It gets the values frommput and parameter registeand writes the results tmtput registers
with or without usingemporary and address registers as showrigure 3-4:

Input Registers

Address Registers

Zm

Parameter Registers

T

Output Registers

Figure 3-4: Registers of the vertex shader

Each of these registers can store fitmaiting pointnumbers, for instance every input registers
from V[O0O] to V[n] (this means that there
n+1 piece of them) can store four BR-long floating point number. Input and parameter
registers are reaonly, output registers are writtnly while address and temporary registers
are both readabl and writable by the ALU.nput registers store data about vertices.
Parameter registers otain values which are valid for more calculations (shader constants),
for examplethe world-view-projection matrix, light positions or light directions. Indexed
relative addressing can be performed using the address registers. The shader works on ol
instruction but on more data parallel at a time, and generally can operate omvatiotesor
quaternionsThis data formats very useful because most of the transformation and lighting
calculations require these kinds of ddteectors and matrices)rhe fact, thatGPUs are
designed to operate on more data in one clock cycle parallel enables them to calculate thes
special tasks much faster than @RUs of the computers. The most important operations will

be described in the next paragraph. Finally the results will be stored in theamtifeoutput
registers and passed on to the next stages of the fixed pipeline.

In DirectX 8, the pipeline was programmed with a combination of assembly instructions,
High Level $hading Language (HLSL) instructions and fixiehction statements. With the
latest APIs it is possible to use only HLSL; in fact, assembly is no longer used to generate
shader code with Direct3D 10, but | introduce #ssembly operations first.evtex shder
verson 1.1 limits the number of instructiorie 128 (later versions increasleis number
dramatically). @erations are in format:

OperationCode DestinationRegister , SourceRegisterl [, SourceRegister2 ] [,
SourceRegister3]
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Namely, first, the code ofhe operation comes followed by the name of the destination
registers, and finally, the source registers, separated by commas. For example, the following
operation adds the values stored in constant register cO and input reQ@isted writes the

result irto temporary register rO:

add r0, c0, vO

The most important instructions are shown in the next table (vertex shader V1.1):

Name Description Instruction slots
add- vs Add twovectors 1
dp3-vs Threecomponent dot produ 1
dst-vs Calculate the distance vectc 1
exp-vs [Full precision 2x 10
log-vs Full precision log2(x) 10
m31-3s31 3 multiply 3
m41-4s41 4 mul tiply 4
mad- vs Multiply and add 1
max-vs Maximum 1
min-vs Minimum 1
mov -vs Move 1
mul - vs  Multiply 1
sge- vs Greater than or equal comp 1
slt-vs Lessthan compare 1

sub-vs |Subtract 1

These instructions are enough to make the most of the calculations but there were some whic
were complicated to perform,rfexampletrigopnometric functionsmeeded to be approximated

by differentTaylor seriesLater vertex shader versions made the job of thgrammers more
comfortable by supporting directly the computing sine and cosine, introducing flow control
and new arithmetical instructions. For more detaieck thgMSDN].

The output of the vertex shader is a set of vertices, which is passed to the next stages of tf
graphical pipeline. Aftemterpolation, face culling, viewport mapping, homogeneous division
etc. the vertices will arrive to the pixel shadegsta

For moredetailsabout vertex shaders, see [LVaPSPwD?9], [NGSaR] or [RTSP].

3.6 The Pixel Shader (Fragment Shader)

Incoming vertices determine the general placement of the objects in the virtual world, but in
the end every pixel need to be rendered orotliput. The pixel shader makes it possible to
order a color to every pixel of the image through the programmer defined instructions. Some
of the possible effects are:

« Perpixel lighting

e Advanced bump mapping
e Volumetric rendering

o Procedural textures

o Perpixel Fresnel term

o Special shading effects
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» Anisotropic lighting

The pxel shaer operates on pixels before tfieal stages of the graphic pipeline (alpha,
depthandstencil test Logically, the output of the pixel shader is the corresponding color and
depth value for each pixel, interpolated from the input vertices. Using pixel shader bypasses
the fdlowing parts of the fixedunction pipeline:

o Texture access

o Texture applications
e Blending

o Fog application

The working method of the pixel shader 6s
data in the input and parameter registérs result willbe calculated with or without the help
of the temporary registers and texture sampleis.finally written into the output register as
shown orFigure3-5: :

i vio) I """ v(n]r F'emporary Regissers
o) I

Textare Sampler Stages

Texture Dats I" Sampiler Stage 0 I r

Fragmont Shader
ALU

t[n]

Parmmcter Registens

—

Texture Data r Sampler Stage n I

o] | ol |

Owrpud Reguniles

Figure 3-5: Thepixel shader ALU

As you see, the main difference between pixel and vertex shader is the possibility to use
texture operations in the pixel shader. Defining a texture as a r@rdet enables the
opportunity to reuse any prendered picture or texture for latealculations as well. There

are some other differencatsq for example, the order of the different kind of instructions is
limited and there are several modifiers and masks to slightly change the input or output
reading methods in the pixel shader. fFrare details see the MSDN library.

Similary to the vertex shader, the pixel shader supports a programming language to define
the shader progm. But the difference amongstruction set versions is significant. The
version 1.11.3 had a more complex imgttion set, but only the reduced instruction set of the
versionl1.4 will be discussed heréater versions are with version lbéckward compatibje

Most of the vertex shader itrsictions became available in the later pixel shader instruction
sets, they are today very similar. The most important operations of pixel shader version 1.4
arevisible on the next table:

Arithmetic instructions Instruction slots
add- ps Add two vectors 1
bem- ps/Apply a fake bump environmemap transform 2
cmp- ps Compare source to O 1
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cnd- ps Compare source to 0.5

dp3- ps Threecomponent dot product

dp4- ps Fourcomponent dot product

Irp - ps |Linear interpolate

mad- psMultiply and add

mov - ps Move

mul - ps Multiply

nop- ps No operation

sub- ps Subtract

Texture instructions

texcrd Copy texture coordinate data as color data
texdeptt Calculate depth values

texkill Cancels rendering of pixels based on a compe
texld Sample a texture

RO R R R R R RR

N

3.7 High Level Shader Language

High Level Shader Language or HLSL is a programming language for GPUs developed by
Microsoft for use with the Microsoft Direct3D API, sowbrks only on Microsoft platforms

and on Xbox. Its syntax, expressions and functions are similar to the ones in the programming
language C, and with the introduction of Direct3D 10 API, the graphic pipeline is virtually
100% programmable using only HLSLy fact, assembly is no longer needed to generate
shader code with the latest DirectX versions.

HLSL has several advantages compared to using assembly, programmers do not need to thit
about hardware details, it is much easier to reuse the code, readsdslitywproved a lot as

well, and the compiler optimizes the code. For more details about improvements, see
[MHLSLR].

| have to mention thatg shader language equivalent with HLSL language. HLSL and CG
are codeveloped by Microsoft and nVidia. They have different names for branding purposes.
As a part of DirectXAPI, HLSL compilesonly into DirectX code, while Cg compiles into
both DirectX and OpenGL code.

HLSL code is used in the demo applications, so | briefly outline here the basics of the
language.

3.7.1 Variable Declaration

Variable definitions are similar to the ones in C:

f 1 o aiedIpebj_matrix;
float4l 4 texture_matri xO0;

Here the types are float4l 4. This means, ¢
and depending on the operation type, they all participate in the operations. This means, matri
operations can be jplemented by them.
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3.7.2 Structures

C-like structures can be defined with the keywstict, as in the following example:

struct MY_STRUCT
{

float4 Pos : POSITION;

float3 Pshade : TEXCOORDO;
|3

The name of the structure MY _STRUCT and it has two fields (the names #&es and
Pshadeand the types ardoat4 andfloat3). For each fieldstoringregisters are defined after
the colon (). | discussed the possible register types in the ch&ptaithough the possible
register names vary on different Shader versions. The two types in the exanijdatd@nd
float3, which means, they are compounded of more float numbers (treewaritbaits) which
are handled together.

3.7.3 Functions

Functions can be also familiar after using C:

MY_STRUCT main (float4 vPosition : POSITION)
{
MY_STRUCT Out = (MY_STRUCT) 0;
/I Transform position to clip space
Out.Pos = mul (view_proj_matrix, vPosition);
/I Transform Pshade
Out.Pshade = mul (texture_matrix0, vPosition);
return Out;

}

The name of the function imain, and its returngMY_STRUCTvariable. The only input
parameter is dloat4 variable calledvPositions and it is stored in th@OSITIONregiste.
Two multiplications are also demonstrated in the exanmplé ¢peration), they are performed
on different types: a matrxector multiplication is shown in the example. By changing only
the variables, it is possible to multiply a vector with anothetorgor two matrices with each
other as well. A list of possible intrinsic functions can be found in Appeddix

3.7.4 Variable Components

It is possible to get the components(x, y, z, w) of the compound variables, as vector anc
matrix components. It isnportant to mention, that binary variables are performed also per
component:

\ float4 c = a* b;

Assuminga andb are both of typdéoat4, this is equivalent to:

float4 c;
cxXx=ax*b.x;
cy=ay*hy;
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c.z=a.z*b.z
cC.wW=aw*b.w;

Note that this is10t a dot product between 4D vectors.

3.7.5 Samplers

Samplers are used to get values from textures. For each different 4@&pyevhich you
want to use, aamplemust be declared.

sampler NoiseSampler = sampler_state

{
Texture = (tVolumeNoise);
MinFilter = Linear;
MagFilter = Linear;
MipFilter = Linear;
AddressU = Wrap;
AddressV = Wrap;
AddressW = Wrap;
MaxAnisotropy = 16;

3
3.7.6 Effects

The Direct3D library helps developers with an encapsulating technique ettkets Effects
are usually stored in a separaext file with .fx or .fxI extension. They can encapsulate
rendering states as well sisaders written i\SM or HLSL.

3.7.7 Techniques

An .fx or .fxl file can contain multiple versions of an effect which are caketiniquesFor
example, it is possible tsupport various hardware versions by using ntecdniquesn a
single effect file. A techniguecan include multiplepassesand it is defined in eacpass
which functions are the pixel shader and vertex shader functions:

technique my_technique
{
pass PO
{
VertexShader = compile vs_2_0 vertexFunction();
PixelShader = compile ps_2_0 pixelFunction();
}
}

3.8 Conclusion

The main ideas were shortly introduced about HLS8Lthe previous paragraphsh&gler
programs of the demo applications are written using HLEIr. more detailed information,
see the corresponding chapter or one of the mentioned referentB®HLSL] or
[MHLSLRY]). A useful HLSL tutorial can be found heféiLSLI]. For a general comparison
of shader version 2.0 and 3.0, $&SaR]


http://ati.amd.com/developer/ShaderX2_IntroductionToHLSL.pdf
http://msdn2.microsoft.com/en-us/library/bb509561%28VS.85%29.aspx
http://www.neatware.com/lbstudio/web/hlsl.html
ftp://download.nvidia.com/developer/presentations/2004/GPU_BBQ/English_Advanced_Shading.pdf
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4 ALTERNATIVE SOLUTIONS

4.1 Introduction

There are various techniques which can function as a core for water surface rendering. Som
of the most importanmethods are Perlin noise, Fast Fourier syntheses and Navier Stokes
equations. Different water representations require absolutely different computational power
and provide different level of realism. It is also possible to combine various approaches, to ge
to the best compromise between them. In this chapter, several solutions are introduced &
possible approaches for our mission. They are based on the previously discussec
mathematical background, and range from simple to extremely complex computations.

Thefollowing parts of water rendering will be discussed in this chapter:

e Water representationswve can use several methods to describe our water surface, but
in the end, everything needs to be described bycesitb be able to render the result.
Grids andparticle systems are the most popular ways for this.

e Water simulation approachesvhich describe the water waves and gets everything in
motion. The different solutions can be useful under different conditions, and complex
systems can be built by combigithem.

¢ Reflection rendering techniques.

e Fresnel term approximations.

e Rendering various water phenomena. Effects, for example, splashes, caustics anc
Kelvin wedge are discussed in this part.

4.2 Water Representations
4.2.1 3D Grids

Representingwater by threalimensonal girds make various realistic water behavior
simulation possible. The main idea is simple: we determine the physical forces and compute
all their effects on the elements of the grid. Although they are easy to describe, the
computations can be expersihysical simulations must be precise, but for rendering water
surfaces, we donod6ét need to be so accurate.
can be used for rendering of small areas of water, and in this case, for example, the Navier
Stokes equations can be nicely applied. The details about physical simulations are out of the
scope of this paper, | discuss here thetsmhs for reatime rendering.

Although 3D grids can represent only small amounts of water irtirm@lperformance, pre
rendering calculations can be computed by them for higher redRemdering underwater
texturescaustics formation, splashes are just some of the possible effects which can have pre
rendering phases to get higher performance during thdimealanimatons. Several paper
writes about these possibiliti¢gsuch as [aEMfRUOEUGH] andESoLBoWbCTaTDT]), but

they are outside the scope of this paper. For our intended use, simpler water representatior
are needed.

4.2.2 2D Grids - Hightmaps

3D grids are accurate approximations of water volumes, but if we accept some limitations, we
can use a simpler solution. To be able to render the water surface, we only need to know th
shape of it, in our case, how high the water is at a given (x,y) ioated This means that the
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volume can be simplified to a heigleld using a function of two variables that return the
height for a given point in twdimensional space. This representation for water surfaces has
restrictions compared to 3D grids. As adtion can return only one value, a height field can
represent one height value for a given (x,y) coordinate. This means overlapping waves can b
de<ribed this way, as shown éiigure4-1.

X
-
>

Figure 4-1: Hightfield limitations. As the height field
stores only one height value for a coordinate like on
the right image, overlapping parts of the surfaces

cannot be described as on the left one.

The main advantage of 2D grids compared to 3D grids is that it is easier to use and a mucl
simpler data structure is appropriate to store it. If the height field is stored in a texture, it is
usually called height magimilarly, the rendering process is called displacemasgping as

the original geometry is displaced by the amount stored in the height map.

Different optimization techniques are used to have bettetinalperformance. For example,

if the heightmap isdefined by a continuous function, it is not needed to render and calculate
the entire water surface, rendering the visible part is enough. In other scenarios, for instance
when NavierStokes Equations are used, every cell of the height map needs tadied,)p

even if they are not visible by the camera. Some optimization method is discussed in the
following paragraphs.

4.3 Performance Optimization

As graphic hardware processes triangles, there is no way to avoid dedaekation Real

water surfaces are continuous, but interactive computer graphics need a polygona
representation so the surface must be discretized. More triangles describe more details in th
virtual world, although more iangles are made up of more vertices. Every graphics
programmer has to find the balance between complexity and performance, this means
between realism and speed.

4.3.1 Classical LOD Algorithms

According to the Level Of Detail (LOD) concept, a complex object lsarsimplified to
different level of details. The smaller is the object on the screen, the less detail is drawn tc
reduce small, distant, or unimportant geometry and to get better performance through this
Figure4-2 demonstrates possible level of details:


http://en.wikipedia.org/wiki/Tessellation
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Figure 4-2: LOD levels of a bunny

If the bunny is small or distant, we cannot recognize the vaditfalence between the more
and less detailed versions. To gain performance, if it is not visually distinguishable, only the
bunny with fewer triangles is renderékhis idea is visualized drigure4-3:

Figure 4-3: LOD example

Other kind of LOD techniques are continuous LODs. Instead of creating different levels
before running, it is possible to simplify a detaildoject to a desired level in riiime. We

store only the most detailed bunny, and the application removes the not necessary polygons 1
gain performance. This way, th€®©D granularity can be much better, not only the previously
generated levels can be usedthough the application becomes more complex. For more
details on generdlOD techniques, see [LODf3DG].

4.3.2 LOD Algorithms on Water Surfaces

LOD techniques can be applied for water rendering as well. If the water surface is made up o
more triangles, forxample, of a triangle strip, this strip can be optimized to result a more
realistic surface than by using simple equal size triangles. The main question to answer is the
how triangles should be arranged.

The following method is discussed in [BMELAB2]. Ti®0 I -8§z@ grid (triangle strip)
simulates the visible part of the water surface, this means that it is always transformed into the
front of the camera. The height coordinate can be calculated with the help of continuous
functions of the other coordinatés = f(x,y), so the place of the vertices can be chosen
without any limitation to get the most realistic result. If we use esjaal triangles in the
triangle strip, the distant ones have only very small visible size.

Optimization can be done by vertegplacement. The distant triangles are too small, they
should be transformed to have about equal size visible by the camera. The near and fe
clipping planes and the width of the triangle strip needs to be taken into account, to have &
water surface spreauler the entire visible surface by the camera. The more problematic part
is the height of theows in the triangle strip to have equal visible sizes. The following
hyperbolic function gives the horizontal place depending on the numberrofibe
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" |
(k) = —

|
Amax

Herek is the number of the rovkmax the amount of rows. The first row of trianglds= 0)
gets the horizontal distance 0, while the last rbw kynax-1) converges to infinity.
As we do not render objects in the infinity, the coordinates of the previoat@yoneed to be
scaled. Before rendering, we surely have a near and a far clipping plane. This means, onl
triangles between these two planes are render&y.lfis the far clipping distanc®&m, the
near distance, the next equation replaces and gbalesordinates of the triangle points:

D |
k..l k

max l_

f(k) =

For example, if the object between the distances 0 and 1000 needs to be rendered, the wa

surface can be scaled to the same area by sBitjpgdo 1000 and,to 0.
The far grid rows must be much broademh® equalkized visible from the camera. This is

visualized orfFigure4-4:

I...-.II.I.\

SEEEEEEn \ Grid lines

O Chpping planes

i Viewing angle

Figure 4-4: Far triangle lines are broader than near
ones.

In [BMELAB2], triangle lines are scaled to match the two sides of the viewing angle using
the following formula:

(i) = R -

Wherei is the actual column numberax is the number of the columnd,is the distance of
the rows(calculated earlier), andis the ratio between the sides of the view (for example: 4:3
or 16:9).For a complex review of different paper in the topic LOD, see [TLODRRGA].
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4.3.3 Using Projected Grid

LOD algorithms determine where vertices are more frequentvaece to skip them to have
enough details to render a nio®king picture reatime. But if the camera moves, the place

on the screen can change where vertices are important. Projected grid algorithms ([RTWR])
try to locate vertices smoothly in cameraapthrough the following steps:

Create a regular grid in the camera space that is orthogonal towards the camera.
Project the grid to the desired plane.

Transform the grid back to wopace.

Apply displacement, waves etc.

Render the grid, which will resudt mostly everspaced gird in camera space.

aorwnE

A realworld analogy can be, for example, if you put a paper with a dotted gird on it in front
of the spotlight, the grid is projected onto the surfaseshown ofrigure4-5:

Transpatent

«—

ot d- papes

Figure 4-5: Real word analogy to projected grids.

This grid looks regular and smooth from the position of the spotlight, and that is our goal with
the vertices of the water surface as well. For more details or for a fancy application which
demonstrates this technique, see [RTWR].

In [IAOOW], an adaptive water mesh is used. The motion of the camera induces the shift of
the mesh over the ocean surface tkenthe vertexes have approximately the same projected
area on screen. They pay attention for a new problem introduced by this method. The surfac
normals cannot be estimated using findéferential techniguesanymorebecause of the
incorrect surface appximation. To determine the normals, analytical methods need to be
used. This is visualized dfigure4-6:

— CONtinuous surface, analytical normals
smummmmn sampled surface, numerical normals

Figure 4-6: Inaccuracy of finite differential methods.

As shown on the figure, depending on how detailed the vertex grid is, analytical methods give
much more accurate surface normals, than finite differential approaches.
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For all the reasons | mentioned above jgrted grids are an efficient technique to optimize
water rendering, but they are complex, and application of them needs careful consideration.

4.4 Water Smulation Approaches
4.4.1 CoherentNoiseGeneration - the Perlin Noise

The water waves can be analytically dédsed, or we can use randdmased techniques as
water waves are similar to other random naturahpheena. Random noise can be b&si
realistic renderingken Perlinpublished a method which gives continuoagse that is much

more similar to random noises in nature than simple random ones. This difference is
visualized orFigure4-7:

Figure 4-7: The difference between random and Perlin
noise. The 2D random noise on the left is generated by
a simple random generator. The Perlin noise on the
right is much closer to random phenomena in the
nature.

Basic Perlin noise ds not look very interesting in itself but by layering multiple noise
functions at diffeent frequencies and amplitudes, as showirignre4-8, a more interestig
fractal noise can be created.

Figure 4-8: Layers of perlin noise with different
amplitudes and frequencies.

The sum of them resultee compound image dfigure4-9:
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Figure 4-9: The sum of Perlin noises with different
amplitudes and frequecies.

The frequency of each layer is the double of the previousvbieh is why the layers usually

are referred to as octaves. By making the noise -tireensional animated twdimensional
textures can be generated as well. More good explanations and illustrations can be found «
[PN2].

A detailed and easy to understand explanation of Perlin noise generation can be found i
[PNM]. For complex detdd, see [SHADERX].

Using Perlin noise as a core for water surfaces needs much less computational power tha
techniques discusseaa the following paragraphs’he main problem with Perlin noise is that

it is not controllable accurately, only the wave amydléds and frequencies are easily
changeable. Interaction with external objectsls®hard to describe.

4.4.2 Fast Fourier Transformations

While physical simulations can be really resource consuming, randsa based solutions

are not accurate enough for every purpose. As a compromise, observation based statistic
models can be used as core of the water surface animation. In this meaeythheight is a
variable of position and time (position means horizontal coordinates (X and Y) without height
(2)). The height can be determined through a function, a set of sinus waves with different
amplitudes and phases. To quickly get the sum dfettamplitudes, inverseast Fourier
TransformationgFFT) can be used. For a detailed example, check [RT3DEUCADX9]. The
resulting surface can be very smooth with round wavesattdp. This is not always
desirable, various methods exist to add sharpness to the waves, making them look mor
choppy. For mee details about this, see ttigapterd.7.2- Creating Choppy Waves

4.4.3 The Navier-Stokes Equations

NavierStokes Equadns (NSE), as mentioned iohapter2.3.4 describe the motion of
incompressible viscose fluids. The acting forces are gravity, pressure forces and viscose
forces. The actual equations are really hard and time consuming to solve, so we need t
simplify and discretize them for reime calculations. An efficient approach can be the
simulation of solid volumes of water as a heifibld, modeling the flow between adjacent
columns of fluid. With this method, waves and other surface artifacts toesa to be
explicitly specified because they arise naturally from the physical conditions occurring within
the system.

[DSoSF] describes a technique simulating vokintransitions through virtual pipes that
connect adjacent columnas shown ofigure4-10:
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Figure 4-10: Neighboring volume cells are connected to
calculate NSE flows.

The vertical columns are connected to their eight neighbors through a set of directional
horizontal pipes. These pipes allow the water pressure to distribute over the entire system
The control points ofhe grid can be sampled to separate adjacent columns. To interact with
external objects, the surface can be simulated as a separate subsystem which propaga
external pressure to the volume grid (separate subsystem asasellisualized orrigure

4-11:
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Figure 4-11: Force propagation on the cells in NSE

The bottom arrows indicate the direction of the flow between columns, the vertical arrows
show the upward velocity and the thin arrows can indicate the velocity vectors for particle
ejection. These different subsystems can interact to form a complex fluid system, as shown ol

Figure4-12:
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particles

\ : surface

columns

Figure 4-12: Complex water rendering system based on
NSE.

Although they are extremely realistic, the NSEs are resource consuming to calculate for even
time-step. The grigize must be absolutely limited for re¢ahe simulations even on the latest
graphic cards. Not redime calculations, for example, for the movie Titanic were performed
on a 2048 x 2048 grid, but this size cannot be handledinealyet. NSE can be usdadr
simulating smaller water surfaces like pools or fountains, although implementations
combining multiple rendering methods exist also. For instance, a simple vertex displacement
technique for distant areas can be combined with NSE for closer interactioexternal
objects. | have to mention that NSE requires world space grid for the calculations, while other
solutions need a different grgpace, like the previously described projected grids.

NSEs are much easier to solve over 2D grids, than on 3B. geenerally, 2D versions are
enough, but they have their drawbacks. As only vertical forces can be inserted to the systen
all the external forces must be simulated with vertical approximations. This can influence the
result, for example in case of winor€es, which are generally horizontal.

4.4.4 Particle Systems

Physicsbased approaches have @®e very popular recently. miproving hardware
performance makes the application of +iale particle systems also possiblEhere are
several ways to compute partidgstems; some of them use only the graphics hardware.
Depending on the issue, vertbased and pixdbased solutions can be appropriate as well to
make huge amount of independent particles seem alive. Particle system techniques can
combined with othewater animation approaches to get a more realistic result.

Particle system approaches need to answer to questions: how do the particles move, and wh
are the particles as objects. The whole system can have a velocity, as a vector, but this vect
does nbneed to be constant across the entire fleigure4-13 visualizes this:
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Figure 4-13: Example velocity flow in a particle system.

The answer to the second question is: our particles can be negligible in size and in mass &
well. But they can carry further information to make other kind of interaction also possible,
for example, color, temperature and pressure, depgd the expected result.

The particles move according to the physical laws, they motion can be calculated in time step:
with the help of our previously discussed velogigctor map. To be able to make these
calculations on graphic hardware, a texturestrstore the place of the particles, so their place

is sampled into a texture. Thesgttees are called particle maps

Based on the previous considerations, the graphics harthaseel method to texture
advection is as follows. The velocitgap and the grticlemap are stored in separate textures,
which have two components. A standard 2D map can be represented this way, the thirc
dimension is added by approximations to gain performance. Offset textures are part of
hardwaresupported pixel operations, sdiet move along the velocHyeld can be
implemented by them. Inflow and outflow (particle generation and removal) is outside the
scope of this paper. More detailed explanations and source codes can be found ir
[SHADERX].

4.5 Rendering Reflections
4.5.1 Static Cube-map Reflections

If the water does not need to reflect everything, it is possible to usegempeeated cubmap

to calculate reflected colors. Cub®maps are a kind of hardwaaecelerated texture maps
(other approaches are for exampghere mappingand dual paraboloid mapping Just
imagine a normal cube with six images on its sides. These images are taken as a photo fro
the center point of the cube, and they show what is visible from the surrounding terrain
through the points of the sides. An exdeis shown orFigure4-14:

Figure 4-14: Cube map example.
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As shown orFigure4-15, the six sides of the cube are named after the three axle of the
coordinatesystem: x, y and z in positive and in negative directions:
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Figure 4-15: Using cube maps.

So we have a cube map and the reflecting surface of the water. We can calculate tliervector
eachpoint of the water that points into the direction of the reflected olgctising this 3
dimensional vector (the red one d&ilgure 4-15), the points of the cubkexture can be
addressed from the center of the cube. This vector aims exactly one point of the cube, whicl
has the same color #te reflected object in the original environment. But this calculations are
much more efficient and hardwaaecelerated to match the reshe requirements, while
calculating global illuminations for every reflecting point needs much more time. Using cube
maps has one more advantage: the cube has sides which represent the environment that is |
visible by the camera, so even points behind the camera can be reflected. On the other han
cubemaps needs to be prendered, so it is impossible to reflect wheng environment (for
instance, with moving objects) if we want to meet the-tiea¢ conditions. Using this
technique, sky can be easily reflected on the water surface, but a moving boat needs to b
handled in another way.

4.5.2 Dynamic Cubemaps

To be abled reflect changing environment the culnap needs to be updated. Because-cube
maps are essentially a collection of six textures on the sides, building-anepbdynamically
requires filling those textures oiy-one. We need to render the scene six timesg for

each face of the cube, setting up the camera so that it matches the point of view from tha
particular cubemap face. Positioning the camera is not too complicated to achieve this, but
the Field of View (FOV) needs to be adjusted to get egizal, squareshaped pictures,
which see the same portion of the scene (90 degree to cover 360 degree together). Because
size of the water surfaces is relatively big compared to the environment, different objects neec
to be reflected in the same directifsam the different point of the water. This means that a
single cubemap is not enough to simulate real reflections on the whole water surface.
Creating more cubeaps for every frame are extremely expensive, so dynamicroape

are generallynotrealtale r nati ves for water reflection

Although they are extremely complex, there exist some very realistic solutions, for example,
in the game Half Life 2. They use more dynamic cube maps generated from various points o
the waer surface, and reflections are got from the stored values through weighted

interpolations. To get redime performance, the cube maps can be regenerated only a few

times in every second.

4.5.3 Reflection Rendering to Texture

In chapterReflection(2.2.1) with the title Reflection | discussed a method to determine the
reflected color for every point of the water surface. One of the most precise solutions for that



Alternative Solutions Calculatinghe Fresnel Term

is creating a virtual view on the other side of the water plane, and rendering the same scen
into a texture, which can be used as a reflection map later. This means, that before renderin
the final image, a preendering phase should be added. The platdeesccamera and the view
vector is mirrored onto the water plane during this phase, and every object of the virtual world
which can be reflected by the water on the final image is rendered from this virtual view into
a texture. Let me shothe idea agaion Figure4-16:
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Figure 4-16: Rendering reflections.

To get the expected result, the place of p&mnnust be calcutad. For this, we have to
determine how far the original place of the camera is from the water plane, so we have tc
determine distanck. If the water is horizontal, this distance has to be subtracted from the
height of the water plane to find the heigbbinate, the other coordinates of the poits
andB are the same. To avoid artifacts, the underwater objects can be removed from the worlc
before the rendering into texture. When the final image is created, this texture can be used as
reflectionmap. The reflective color can be sampled by the help of the vector between the
camera and the points of the water surface, and the shape of the waves can be taken in
account as well. Smaller adjustments can be needed to have better results, for instanc
smaler modifications of height of the clipping plane or point B can improve the reality by
producing less artifacts.

4.6 Calculating the Fresnel Term
4.6.1 Accurate Approximation of the Fresnel Term

The operations to determine the exact Fresnel value for each pixel of the water are very
costly. If the water covers a significant part of the display, calculatingdberate valués
unsuitable for realime conditions, so approximations need to be udadthis case,
approximations by linear functions are inadequate due to inaccuracy. In [DWAaR] they used
reciprocal of different powers which are surprisingbyrectapproximations. Some of these

are visible orFigure4-17.
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Figure 4-17. Fresnel term approximations. The red
solid line shows the power of 8, the blue dashed line is
the power of 7 and the green dashed line is the power

of six.

The difference between the analytical calculation and the approximation by the power of 8 is
visualizedon Figure4-18;

Figure 4-18: The error of the approximation. The
dashed blue line is the approximations be the function
1/(1+x)8 and the red line is the analytically calculated
accurate value. The values of the X axis show the
cosine between the normal and the eye vector.

4.6.2 Simpler Solution

If the angle between the view vector and the normal vector is bigger, the amount of reflection
gets higher. For thisRiemer]used a simple approximation by projecting the eye vector on
the normal vector of the water plane as showFkigare4-19:

= Amount of reflection

— Amount of refraction

Figure 4-19: Fresnel approximation through projeéiion
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The amount of refraction (refraction coefficient) can be easily calculated by the dot product of
the eye and the normal vector, and the séithe two coefficients is always 1.

4.6.3 A Realistic Compromise

The cheap calculains introduced in sectio®impler Solutiondo not take the indices of
refraction into account and have a stronger divergence from natural effect. This divergence
results an unnaturally strong reflection. [SHADERX2] advises a better approximation:

R(ar) = R(O) + (1-R(0)) *(1-cos(a) )
with R(0) = (nl1-n2 )?/ (nl + n2 )2

Wherenlandn2ar e t he indices of refr actsitheanglé or
between the eyeector and the normal vector of the surface. Fomaiter boundarynl =
1.000293 anah2=1,3333333; this means thR{0) = 0.02037f and.-R(0) = 0.97963f.Figure
4-20 visualizes the difference between this approximations and a simpler solutio(tL-also
cos(U)):

4 R (angle)

03

Xad 1-cos(angle)
o+l Ongma] / F'rcsnel
and -

___R(OU-R())*(1-cos(angle))®
1 1.2§ 5

5 angle

02 [

025 0.4 0,78

Figure 4-20: Accurate Fresnel term approximatio n.
4.6.4 Using Texture Lookup

To combine speed and accuracy it is possible tecplailate the values of the Fresnel term

for different angles and store them in a-aimensional texture as a loalp table. During
rendering, after we calculated the dot produetiween the normal and reflection vector, we
can find the matching Fresnel term value in the lopkable for the dot product. This way

the Fresnel term can be determined in a very fast and relatively accurate way. This approac
is used in [RTWR].

4.7 Rendering Various Water Phenomena
4.7.1 Generating SpaysUsing Particle Systems

Particle systems can be good solutions to maketiraalinteraction between external objects
and the water surface. They can efficiently animate moving surface as well, but usually they
are applied with other techniques at the same time. Flowing water, -oraies, spay,
waterfalls are just some of the possible wagtated topics that can be implemented through
particle systems.
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Sprays are modeled as a separate subsystEdEmSF] as mentioned earlier ifhe Navier
Stokes Equationshapter. When an area of the surface has high upward velocity, particles are
distributed over that area. Par c| es dondét 1 nteract with ea
water surface because of the gravity, and then they are removed from the system.

[DWAaR] uses a similar padie model to simulate water spray. Simple Newtonian dynamics
are taken into account: waterur f aceod6s velocity at the spa\
influences their initial velocity. It can then be updated according to gravity, wind and other
possble global forces. Rendering is done with mixture of alfshasparency and additive
alpha sprites. For more details and screenshots,3&&A&R]. These previously discussed
techniques @n be really convincing visually for spraymulation.

4.7.2 Creating Choppy Waves

The general methods discussed in these pages use randomly generated or sinusoidal wa
formations. They can be absolutely enough for water scenes with normal conditions, but there
are some cases, when choppy waves are needed. For example, stormy weather or shallc
water wherethesoal | ed fApl unging breaker o waves ar
will briefly introduce some of the approaches to get choppier waves.

4.7.2.1 Analytical Deformation Model

[UVTDFRWR] describes an efficient method which disturbs displaced vertex positions
analytically in the vertex shaddfor example, xplosions are important for computer games.
To create an explosion effect, they use the following tdam

1 I, sin{kr +wt)e™
lr) =

r-

wheret is the timer is the distance from the explosion center in the water plan® ad
decimation constant. The valueslgfw, andk are chosen according to a given explosion and
its parameters.

For rendering, they displace the vertex positions according to the previous formula, which
resultschoppy waves to geonvincing explosion effects.

4.7.2.2 Dynamic Displacement Mapping

[UVTDFRWR] introduces another approaatsa The necessary vertex displacemean be
rendered in a different pass and later used to combine it with the waterfiredyhthis way,
some calculations can be done before running the application to gampence. Depending
on the bas of the water rendering, the displacements bancomputed by the above
mentioned analytical model or, for example, by the NaSiekes equations as well.

Although these techniques can result realistic water formations, they need huge textures t
describe the details. The available texture memorytlaadhader performance can limit the
applications of these approaches.


http://www.eecs.berkeley.edu/~job/Papers/obrien-1995-DSS.pdf
http://www.gamasutra.com/gdce/2001/jensen/jensen_03.htm
http://www.gamasutra.com/gdce/2001/jensen/jensen_03.htm
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4.7.2.3 Direct displacement

In [DWAaR] they compute the displacement vectors with FFT. Instead of modifying the
heightfield directly, the vertexes are horizontally displaced using the faligwguation:

X = X + oaD(X,1t)

where & i s a constant controlling the am
vector. D is computed with the following sum:

DX = Z_]%])(K f)e®*

K
whereK is the wave direction, is the time,k is the magnitude of vectdf andh(K,t) is a

complex number representing both amplitude and phase of the wave .

The difference between the original and the displaced waves is visualiEéguoed-21. The
displaced waves on the right are much sharper than the original ones:

Figure 4-21: Difference between the original and
displaced wave fo rms.

4.7.2.4 Choppy Waves Using @rstner Waves

If the rendered water surface is defined by the Gerstner equations, our task is easier. Gerstn
waves are able to describe choppy wave forms. Amplitudes need to be limited in size,
otherwise breaks can look unrealistA fine solution to create choppy waves can be the
summation of Gerstner waves with different amplitudes and phases. Summation can be
carried out through the following sum:


http://habibs.files.wordpress.com/2008/04/choppy_waves.jpg
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N

X = Xp— Z(ki/ ki) A sin(k; - Xo — wit + @)

=1
6

y = 24' cos(k; - Xg — wit + ¢;)
=1

where k is the set of wave vector; is the set of magnitudes,; As the set of wave
f r e g u e;nsc¢hie sesof phases and N is the number of sine waves.

Sum of 3 Gestner waves is visualized éigure4-22:

Figure 4-22: Sum of 3 Gerstner waves

4.7.3 Rendering Caustics
4.7.3.1 General Approaches

Some caustics rendering techniques use environment mapping. However it is supported b
graphic hardware, it is only good approximation in the calkere the refleedrefraced

object is small compared to its distance from the environment. This means, environment
mapping can be used only when the objects are close to the water surface. Objects unde
dynamic water surfaces need an often updated emagat map, so the usability of
environment maps for caustics rendering is limited.

Several approaches render accurate caustics through ray tracing methods, but generally, th
are too timeconsuming for realime applications. (See [LWIUBBT]). Other techuoes
approximate textures of underwater caustics on a plane using wave theory. Although, thes
moving textures can be rendered onto arbitrary receivers at interactive frame rates, the
repeating texture patterns are usually disturbing.

Graphics hardware hamade significant progress in performance recently and many
hardwarebased approaches has been developed for rendering caustics. Real caustic
calculation needs intersection tests between the objects and the viewing ray reflected at th
water surface. Genaly, the illumination distribution of object surfaces needs to be
computed, but these are really thmensuming and difficult. Although, backward ray tracing,
adaptive radiosity textures and curved reflectors are published methods for creating realistic
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i mages of caustics, they candot be done re
more details about these approaches, see [BRT], [ARTfBRT] and [IfCR].

4.7.3.2 CausticMaps

Causticsmaps show intensifies of caustics. They are generated by projectitrgatigges of

the water surface onto the objects in the water. The intersecting triangles influence the force
of light on the object. The intensity of the caustic triangles is proportional to the area of the
water surface triangle divided by the area @f thustic triangle. The more projected triangles
intersect each other and the higher their intensity is at a given point, the lighter that point is. In
the end, caustics map and the original illumination map is mergedragwe4-23:

RGB alpha
components component
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Figure 4-23: Using caustics map.
4.7.3.3 Volume RenderingBased Caustics

[FRMfRaRCDtWS] describes a technique for rendering causticsTasit method takes into
account three optical effects, reflective caustics, refractive caustics, and reflection/refraction
on the water surface. It calculates the illumination distribution on the object surface through
an efficient method using the GPU.their texture based volume rendering technique objects
are sliced and stored in two or thidienensional textures. By rendering the slices in back to
front order, the final image is created, and the intensities of caustics are approximated on th
slices mly, not on the entire objecthe method is visualized dfigure4-24:
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Figure 4-24: Volume rendering based caustics

Although, this reduces computation time, it does not enabldinealcaustics rendering. The
most expensive part of their technique is refreshing caustics map.
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4.7.3.4 Ray-tracing BasedCaustics

[IISTfAC] introduces a faster approach for rendering caustics. The method emits particles
from the light source and gathers their contributions as viewed from the eye. To gain
efficiency, they emit photons in a regular pattern, instead of random pathgaftbm is
defined by the image pixels in a rendering from the viewpoint of the light. Or in another way:
counting how many times the ligaburce sees a particular region is equivalent to counting
how many particles hit that region. For multiple lightiszes, multiple rendering passes are
required. Several steps are approximated to reduce the required resources, for exampls
interpolation amongneighboringpixels, skipping volumetric scattering effects or restriction

to point lights.

4.7.3.5 Bounding Volume Baseé Caustics

In [IROCulWV], a more accurate method is described. In the first passpasidon of
receivers igendered to a texture. In the second pass, a bounding volume is drawn for eacl
caustic volume. For points inside the volume, caustic intersitpinputed and accumulated

in the frame buffer. They take warped caustic volumes into account also, which is skipped in
the other caustieendering techniques. Theiethodcan produce redlme performance for
general caustic computation, but it is na$tfenough folarge water areas-or fully dynamic

water surfaces with dynamic lighting, thenethod rendered thenageshown onFigure4-25

at 1280 x 500 pixels wh 0.2 fps:

Figure 4-25: Bounding volume based caustics

For more details, see [IROCulWV].

4.7.3.6 Optimized, Caustics Map Based Approach

In [DWAaR], they optimize their approach to reghe performance. They consider only
first-order rays and assume the receiving surface at a constant depth. Incoming light beam

are refracted, and the refracted rays are then intersected against a gieefriglae 4-26
illustrates the method, it shows the projection of four water surface triangles:
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Figure 4-26: Projecting water surface triangles to
produce the caustics map.

To reduce the necessary calculations, only a small part of the causafics calculated, and
they show a method to tile it for the ent
and theposition of the triangles are used to calculate the textowedinates by projection.
Forfurtherdiscuss on this method, see [DWAaR)].

4.7.3.7 Using Pregenerated Textures

The main ideas of caustics rendering were briefly introduced. The accurate nagiplyday
tracing techniques, but they cannot produce-tiged performance without cheating. The
most often used approaches use-geperated caustic textures and try to avoid the visible
repetition.Shifting the texture is necessary, but texture animatiodsf@mations can make

this solution more realistic. All the other methods can be a source f@epegating the
caustics map, so | encourage the reader to try out the various possibilities. It can be also
good idea to make transitions between more tauektures to make them more alive.
Although, various approachesxist to avoid texture repetitionvhich can help by caustics
rendering as well, they are out of the scope of this paper.

4.7.4 Foam generation

To get the most realistic foamy waves particle systare the best approach. Although they
can simulate every property of the foams, only for small water surfaces can they be efficient
enough. Other methods need to be taken into consideration.

The main idea for foam generation in the water surface remdienature is the application

of precalculated foantexture. The choppiness of waves is evaluated, and on the places
where it exceeds a specific level, fodmxture is blended to the final color. [dVDfRWR],

they use the following formula to calculate the transparency of the tednre:

H—H,
.Hm.;x—Hl

0

|
Foam.a = saturate i
)

where Hhaxis the height at which the foam is at maximum, HO is the base height, and H is the
current height.
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If the foamtexture is animated, it can show the formation and dissipation of the foam also. In
[ DWAaR] they donot ani mate the texture, k
alpha value decreases continuousind if the choppiness is high enough, the alpha is
increased through some frames to get a good visual result.

The limitations of this technique are the texture repetition and the shortage of motion. The
repeating patterns can be noticed because they are the same everywhere. The other problern
thatthefoand oesndét move on the water surface ac

4.7.5 The Kelvin wedge

Producingthis phenomenoris easier if the bas of the water rendering system is capable of
receiving outer forces, likefor example FFT and NavieiStokes equations do. In
[CBAfAWW], a different approach is used as core of the wave simulation. Their solution uses
the motion vector between two picture frames to calculate how the water-fielighs to be
altered for the following fram An additive contribution is computed for each swimming
object. They got a very realistic result in [CBAfAWW], as showrFagure4-27:

Figure 4-27: Rendering Kelvin wedge.

This idea can be also implemented with FFT based systems as well. Waves behind an
moving object can bdescribed and these patterns can be added to the system if necessary
The most important parameters are the speed of the boat and the type and depth of the water

If a waterrendering system uses Nawvfgtokes equations, the Kelvin wedge can be produced

by adding external forces to the system. Only experimentation is neededéealigic results
in various cases.

[ s3




Lake Water ShadePreconditions

5 LAKE WATER SHADER

There are many different types of water in our world and they range from small water
surfaces in a mug to endless areasadans. Typically, smaller waters interact with floating

or falling objects while bigger surfaces get into reaction with the wind and form waves. This
chapter describes an example of mieglieed water area rendering: smaller lakes and rivers
with moderag¢ waves.

5.1 Preconditions
In this chapter | discuss creating water effects with the following preconditions:

Realistic, nicéooking water needed

Middle-sized, flat water surface

Moderate interaction with the wind

No need for breaking waves or foam

No need fo underwater effects (The view point is always over the water surface)
Real time performance

Using highfields or trianglestrips can result in very nideoking effects, but if the waves do

not need to be braking and the performance is an important faaetoisimpler oniyshader

driven solutions can be a good compromise. To gain efficiency, the water surface will be
approximated only by a single square.

5.2 Before Using the Shader

The water surface will be a square which means that it is represented oolyr bseftices.

This waterplane intersects the virtual world at a certain height, and if the landscape is lower
than the height of the water plane, the water is visible. Everywhere else the water will be
covered by the landscape. The idea is showhigmre5-1:

Figure 5-1: The water plane intersects the landscape

Landscape can be created, for example, from armig. | discuss a technique for this and for
creating skydomeon the homepage this pap&hose ideas can be the isa®r the following
water effectsFor more details, see [HWS] or the accompanying DVD.
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5.3 HLSLCode

In the HLSL code we define the technique to create the water éffieat only one pass, and
both shaders can be set to versioni2.@. The definition is the following:

technique Water
{
pass PassO
{
VertexShader = compile vs_2_0 WaterVS();
PixelShader = compile ps_2_ 0 WaterPS();
}
}

The definition of the structure returned by the vertex shader describes the variables. At first,
we need to determine the sampling positions which are used later in the pixel shader. The
sampling positions areturned(the name of the variables shows their yaajiPosition3Dis
needed to be able to calculate #fveurateeye vector in the pixel shader:

struct WaterVertexToPixel

{
float4 Position : POSITION;
float4 ReflectionMapSamplingPos : TEXCOORD],
float2 BumpMapSamplingPos : TEXCOORD?2;
float4 RefractionMapSamplingPos : TEXCOORD3;
float4 Position3D : TEXCOORDA4;

I

The structure returned by the pixel shader is not so complicated any more. Usialgybd
information, we sample the different textures and calculate the final color of the pixel which
is written to the frame buffer. Only this color value is returned:

struct WaterPixelToFrame
{

float4 Color : COLORO;
|3

Calculating the sampling coordinates feflection and refraction maps is possible through
creating the necessary matrices. Multiplying the vieatrix and the projectiomatrix results

the viewprojection matrix. This can is multiplied with the worghtrix to get the world
view-projection matx, and so on and so forth. We can get the sampling positions, for
example, with these lines:

WaterVertexToPixel WaterVS(float4 inPos : POSITION, float2 inTex: TEXCOORD)
{
WaterVertexToPixel Output = (WaterVertexToPixel)0;
float 4l 4 pr eVi éxWiéw, xPjojeatian)y on = mu |
float4l 4 preWorl dVi ewProjection = mul (
float 414 preReflectionViewProjection =
float4l 4 preWorl dRefl ectionViewProject.i
preReflectionViewProjection);
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Output.Position = mul(inPos, preWorldViewProjection);
é

Output.ReflectionMapSamplingPos = mul(inPos, preWorldReflectionViewProjection);
Output.RefractionMapSamplingPos = mul(inPos, preWorldViewProjection);
return Output;

}

Reflection and refraction maps asampled using the perturbated positionsthe pixel
shader The reason for using perturbations is described in the seéaffoThe perturbated
texture coordinatecan be calculated as follows:

WaterPixelToFrame WaterPS(WaterVertexToPixel PSIn)
{
ProjectedTexCoords.x =
PSiIn.ReflectionMapSamplingPos.x/PSIn.ReflectionMapSamplingPos .wi(® 3if
ProjectedTexCoords.y =
PSiIn.ReflectionMapSamplingPos.y/PSin.ReflectionMapSamplingPos.w/2.0f + 0.5f;
float4 reflectiveColor = tex2D(ReflectionSampler, perturbatedTexCoords);
e
ProjectedRefrTexCoords.x =
PSiIn.RefractionMapSamplingPos.x/PSIn.RefractionMapSamplingPos.w/2.0f + 0.5f;
ProjectedRefrTexCoords.y=
PSiIn.RefractionMapSamplingPos.y/PSIn.RefractionMapSamplingPos.w/2.0f + 0.5f;
float4 refractiveColor = tex2D(RefractionSampler, perturbatedRefrTexCoords);
return Output;

5.4 Rendering Reflections

To be able to reflect the objecbove the surface as described in chaeflection
Rendering to Textur@l.5.3, we need to have the image of the reflected objects, which shows
the reflected color for each pixel of the water. Before creating the final picture, this image can
be rendered into a textuas a new renddarget and later can be used to the reflection effects.

In the C# code the new texture (new rerideget) needs to be defined and initialized first:

: private RenderTarget2D reflectionRenderTarg;

. private Texture2D reflectionMap;

. reflectionRenderTarg = new RenderTarget2D(device, 512, 512, 1,
. SurfaceFormat.Color);

The original viewpoint and viewdirection needs to be mirrored onto the plane of the water
as described in chapt2r2.1 For more details, see [RIEMER].

We need to create the matrix of the virtual view by mirroring the original one onto the water
planeas follows

| private Matrix reflectionViewMatrix;

float reflectionCamZCoord = - cameraPosition.Z + 2*waterHeight;
i Vector3 reflectionCamPosition = new Vector3(cameraPosition.X,

i cameraPosition.Y, reflectionCamzZCoord);
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float reflectionTargetZCoord = - targetPos.Z + 2 * waterHeight;
Vector3 reflectionCamTarget = new Vector3(targetPos.X, targetPos.Y,
. reflectionTargetZCoord);

Vector3 forwardVector = reflectionCamTarget - reflectionCamPosition; i
' Vector3 sideVector = Vector3.Transform(new Vector3(1, 0, 0),
cameraRotation); Vector3 reflectionCamUp = Vector3.Cross(sideVector,
. forwardVector);

r eflectionViewMatrix = Matrix.CreateLookAt(reflectionCamPosition,
' reflectionCamTarget, reflectionCamuUp);

After the entire world (without water) is drawn from the virtual view, this image needs to be
rendered onto our temporary rendarget. To avoid ghoseflections and hidden reflected
areas, a clipping plane can be used to discard the objects under the plane of the water. Th
step helps eliminating unnecessary rendering and avoiding possible artifacts.

Clipping planes must be set to remove areas, wtacimot be reflected on the water surface,
but can hide reflections. The idea is visualizedrmure5-2:

Figure 5-2: Hidden reflections.

If we want to get the possible reflections from point A, we have to render the reflection map
from point B. But before rendering, we have to remove every underwater object, because the
can hide real reflectionssahe underwater teain does orFigure 5-2. Although the arrow
points the reflected point if you look onto the water surface, the first intersection from point B
is an underwater padf the scene. After removing everything under the water level with a
clipping plane, the first intersection point will be our desired target, which is reflected on the
water.

The clipping planes can be set up as follows to remove the underwater objects:

i Vector3 planeNormalDirection = new Vector3(0, 0, 1); :
. planeNormalDirection.Normalize();
Vector4 planeCoefficients = new Vector4(planeNormalDirection, -

waterHeight);
1 Matrix camMatrix = reflectionViewMatrix * projectionMatrix;
+ Matrix invCamMatrix = Matrix.Invert(camMatrix);

invCamMatrix = Matrix. Transpose(invCamMatrix);
planeCoefficients = Vector4.Transform(planeCoefficients,
1 invCamMatrix);


http://habibs.files.wordpress.com/2008/04/clipping_plane1.jpg
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. Plane refractionClipPlane = new Plane(planeCoefficients);
i device.ClipPlanes[0].Plane = refractionClipPlane; |

--------------------------------------------------------------------------------------------------------------------------

 private void DrawReflectionMap()

{

Vector3 planeNormalDirection = new Vector3(0, 0, 1);
planeNormalDirection.Normalize();

. Vector4 planeCoefficients = new Vector4(planeNormalDi rection, -
: waterHeight);

i Matrix camMatrix = reflectionViewMatrix * projectionMatrix; ,
Matrix invCamMatrix = Matrix.Invert(camMatrix); i
; invCamMatrix = Matrix. Transpose(invCamMatrix); :
. planeCoefficients = Vector4.Transform(planeCoefficients,
invCamMatrix);

Plane reflectionClipPlane = new Plane(planeCoefficients); :
; device.ClipPlanes[0].Plane = reflectionClipPlane;

. device.ClipPlanes|[0].IsEnabled = true;

: device.SetRenderTarget(0, reflectionRenderTarg);
device.Clear(ClearOptions.Target | ClearOptions.DepthBuffer,
Colo r.Black, 1.0f, 0);

. DrawTerrain(reflectionViewMatrix);

: DrawSkyDome(reflectionViewMatrix);

. device.ResolveRenderTarget(0);

: reflectionMap = reflectionRenderTarg.GetTexture();

i device.SetRenderTarget(0, null);

i device.ClipPlanes[0].IsEnabled = false;

| have tonotice that, to restore the original state, the clipping plane is set to false at the end of
thedraw method. The terrain and the sidgme are drawn using the matrix of the virtual view
(reflectionViewMatriy because of the reasons discussed earliehig\point all the reflection

data is stored on a texture.

On Figure5-3, the reflection map is shown on the right which was used to produce the image
on the left:

Figure 5-3. The final image (left) and the reflection
map (right). The reflection-map is captured from
underneath the water level as discussed earlier, and
from that point it i singptessi bl e to see what
skyo6. This results the black area on the

[ s
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5.5 Rendering Refractions

The method to produce a refraction map is similar to one of the reflections map. There is nc
need to change the view point, the virtual and the original-viestors are the sambut the
clipping plane needs to be inverted, as everytlsrg be rendered below and not over the
water level.

. RenderTarget2D refractionRenderTarg;

. Texture2D refractionMap;

. refractionRenderTarg = new RenderTarget2D(device, 512, 512, 1,
+ SurfaceFormat.Color);

The clipping plane is applied on the graphic hardware, and therefore, the vertices are ir
camera space already when they will be compared to the plane. Because of this, the plan
needs to be transformed with the inverse of the cametax. This can be achieved by the
following lines:

Vector3 planeNormalDirection = new Vector3(0, O, -1);
i planeNormalDirection.Normalize();

. Vector4 planeCoefficients = new Vectord(planeNormalDirection, 5.0f);
: Matrix camMatrix = viewMatrix * projectionMatr iX;

i Matrix invCamMatrix = Matrix.Invert(camMatrix);

i invCamMatrix = Matrix.Transpose(invCamMatrix);

. planeCoefficients = Vector4.Transform(planeCoefficients,
invCamMatrix);

Plane refractionClipPlane = new Plane(planeCoefficients);

In the draw method the clang plane needs to be created, applied, and finally the original
state needs to be restored after drawing onto a texture. The source code for this is th
following:

. private void DrawRefractionMap()

R

+ Vector3 planeNormalDirection = new Vector3(0, O, -1);
. planeNormalDirection.Normalize();

. Vector4 planeCoefficients = new Vector4(planeNormalDirection, 5.0f);
i Matrix camMatrix = viewMatrix * projectionMatrix;

1 Matrix invCamMatrix = Matrix.Invert(camMatrix);

i invCamMatrix = Matrix. Transpose(invCamMatrix);

planeCoef ficients = Vector4.Transform(planeCoefficients,
invCamMatrix);

Plane refractionClipPlane = new
Plane(planeCoefficients);evice.ClipPlanes[0].Plane =

. refractionClipPlane;

. device.ClipPlanes[0].IsEnabled = true;

device.SetRenderTarget(0, refractionRenderTarg);

. device.Clear(ClearOptions.Target | ClearOptions.DepthBulffer,
. Color.Black, 1.0f, 0);

i DrawTerrain();
i device.ResolveRenderTarget(0);
. refractionMap = refractionRenderTarg.GetTexture();
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. device.SetRenderTarget(0, null);
i device.ClipPlanes[0].IsEnabled = false;

The refraction data is also stored on a texture at this point of the source code. In the nex
section they are available to create the final image.

An example is given oRigure5-4. The refraction map is shown on the right which was used
to produce the image on the left:

Figure 5-4: Example refraction map (right) and final
image(left).

Notice that the clipping plane is set not exactly to the water level, but a little bit higher to
avoidartifactsat the edges. To gaperformancethe refraction map is half the size of the
original image, just like the reflection map.

5.6 Fresnel Term Approx imations

Operations to calculate the Fresnel term correctly are very comggexchapteR.2.6§. To

blend the previously determined reflected and refracted astomeed the proper ratio
between them. In this demo application | use various solutions to approximate the Fresne
effect.

Reflection and refraction colors need to be blended depending on the cosine of the angle
between the eyeector and the normalector. As both of these vectors are one unit long, the
cosine of the angle can be determined by the dot product of them.

The first solution is the projection of the eye vector on the normal vector, which approximates
the Fresnel term relatively good, but not@@te enough. The projection can be calculated by
dot product. This is only adjusted with some terms to get similar result with the approaches
described later:

if (fresnelMode ==0)

{
fresnelTerm = dot(eyeVector, normalVector);
/Icorrection
fresnelTermF 1-fresnelTerm*1.3f

}

[0 [
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The next @proach uses the formula diiapter4.6.3 For more details, see [EMaRoOTWONT].

if (fresnelMode == 1)
{

fresnelTerm =0.02f+0.97f*pow((:dot(eyeVector, normalVector)),5);
}

The third approximation is discussed in [CgTOOLKIT]. It also calculates the dot product

between the eyeector and the normadector. After adding 1 to this, to get the result, we
divide 1 by the fifthpower of this value:

if (fresnelMode == 2)

float fangle = 1+dot(eyeVector, normalVector);
fangle = pow(fangle ,5);
fresnelTerm = 1/fangle;

}

To be able to adjust the settings the xDrawMode input variable influences the Fresnel value. |

is then reduag between 0 and 1. Finally, the reflection and refraction values are combined:

//Hardness factoruser input
fresnelTerm = fresnelTerm * xDrawMode;

/ljust to be sure that the value is between 0 and 1,
fresnelTerm = fresnelTerm < 0? O : fresnelTerm;
fresrelTerm = fresnelTerm > 1? 1 : fresnelTerm;

I creating the combined color
float4 combinedColor = refractiveColor*ftesnelTerm) + reflectiveColor*(fresnelTerm);

Some screenshots of water with the differently adjusted Hreshee in the demo application
is visualized orFigure5-5:

Figure 5-5: Screenshot of the demo application to
visualize different Fresnel term approximations

5.7 Creating Waves

To create an efficient wave effect for a bigger area the number of the vertices must be limited

In the lake water shader | used the following optimization techniques:
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» Creating the waterfiect only by pixel shader. In this manner, the water can be made
of a very limited number of vertices.
« Wave motion effect created only by bumap.

The ripples of the water are animated by a moving borap. ReadRiemet for more details

about this techniqud-rom an original wave picture it is possible to create the gradient map of
the image which shows the perturbations of the surface. A gradient map is the same size &
the original picture, and every m@kstores a vector in the RGB components. This vector
defines the deviation from the original normal vector at every single point of the image. The
original normal vector for an absolutely flat surface is (0;0;1), for more precise calculations
the valuerange €1;1) can be scaled to the values of the color components: 1 will be the
maximum (256), 0 will be scaled to the half (128), whildo the minimum (0). For example

the vector (0;0;1) is scaled to (128;128;256). As long as the perturbations arerynot ve
significant, every pixel of the image should have some similar values to (128;128;256), and
this means, the blue component has always the highest value. This results a predominantl
blue gradient magike the one oifrigure5-6:

Figure 5-6: Gradiant map.

Gradient map areusually called bump map in graphic development. In the XNA code we
need to load the bump map and pass it as a parameter for the shaders, just like the elaps
time to get the waves in motion:

private Texture2D waterBumpMap;

: waterBumpMap = content.Load (owaterbumpo) ;

i effect.Parameters["xWaterBumpMap"].SetValue(waterBumpMap); elapsedTim
e += (float)gameTime.ElapsedGameTime.Milliseconds / 100000.0f;

__________________________________________________________________________________________________________________________

In the HLSL code, the inpliumpmap and samplerdefined:

Texture xX\WaterBumpMap; Texture xXWaterBumpMap;
sampler WaterBumpMapSampler = sampler_state { texture = ; magfilter = LINEAR;
minfilter = LINEAR; mipfilter=LINEAR; AddressU = mirror; AddressV = mirror;};

The vertex shader passes the texture coordinates pixtfleshader. Note, that theTexvalue
is divided by the wavelength to make the bump map be stretched over the entire surface
Adding a timedependant mowveector will move the waves:

struct WaterVertexToPixel
{
float4 Position : POSITION
float4 ReflectionMapSamplingPos : TEXCOORD1;

62


http://www.riemers.net/

Lake Water ShaderAddingDull Color

float2 BumpMapSamplingPos : TEXCOORD?2;
é
¥
é
float2 moveVector = float2(0, 1);
Output.BumpMapSamplingPos = inTex/xWavelLength + xTime*xWindForce*moveVector;

At the beginning of the pixel shader code, the bump maanspled, the values are scaled
back and related to the wave height variable. Finally, the perturbation is added to the original
coordinates:

float4 bumpColor = tex2D(WaterBumpMapSampler, PSIin.BumpMapSamplingPos);
float2 perturbation = xWaveHeight*(bumpCola - 0.5f);
float2 perturbatedTexCoords = ProjectedTexCoords + perturbation;

The result can be get by sampling the reflection and refraction maps with the perturbatec
coordinates:

float4 reflectiveColor = tex2D(ReflectionSampler, perturbatedTexCoords);
float4 refractiveColor = tex2D(RefractionSampler, perturbatedRefrTexCoords);

To avoid incorrect edges at the border, the clipping pane can be set to higher point:

Vector4 planeCoefficients = new Vector4(planeNormalDirectinsaterHeight+1.0f); \

In the final version of the source code, the wind direction is also a parameter totheake
water move along the river and the rotation matrices are generated in the XNA code to gair
some performance

5.8 Adding Dull Color

To get more realistic result, some dddllaish color is added to the final water color. This can
be also adjusted by the user:

float4 dullColor = float4(0.1f, 0.1f, 0.2f, 1.0f);
float dullBlendFactor = xdullBlendFactor;
Output.Color = (dullBlendFactor*dullColor +{dullBlendFactor)*combinedColor);

5.9 Specular Highlights

Specular highlights are approximated by adding some light color to specific areas as the
Phong illumination model describes. For computational reasons, theektdf is used
instead of the vector of reflectance. For more details taihm) seechapter2.4.1 The half

vector is also approximated, and some perturbations are added from the values of the bumy
map EpecPerturl. In this demo, | usethe following code for this:

float4 speccolor;

float3 lightSourceDir = normalize(float3(0.1f,0.6f,0.5f));
float3 halfvec =
normalize(eyeVector+lightSourceDir+float3(perturbation.x*specPerturb,perturbation.y*specPerturb,0)

);
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The angle between the surfasarmal and the hal’ector is calculated using the dot product
between them. An input variablepecpower adjusts the power, which results the specular
highlights only in case of a very little angle between the vectors. Finally, the specular color is
addedo the original one.

float3 temp = O;

temp.x = pow(dot(halfvec,normalVector),specPower);
speccolor = float4(0.98,0.97,0.7,0.6);

speccolor = speccolor*temp.x;

speccolor = float4(speccolor.x*speccolor.w,speccolor.y*speccolor.w,speccolor.z*speccolor.w,0);
Output.Color = Output.Color + speccolor;

OnFigure5-7 ascreenshots of lake water specular highlightgsible

Figure 5-7: Specular highlights of the demo
application.

5.10 Summary

Rendering lake water is a huge challenge. I tried to introduce the main steps and ideas, but tr
number of different solutions is unlimited. The adjustable Fresnel termoxapmtion and

other effects can visualize the various possibilities, but to have a visually absolutely
convincing result, more specific requirements need to be defined. My demo application can
be extended and improved in myriad ways; | only can encouthge reader for
experimentationThe entire shader code of the Lake Water Demo application can be found in
chapter10.3 - Appendix Ci ShaderCode of the Lake Water Demo ApplicatioBome
screenshots can be foundAppendix Fi Screenshots of the Lake Wai@emo Application

For more details and sample videos, check the homepage of the project ([HWS]).
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6 OCEAN WATER SHADER

6.1 Introduction

Ocean water has several phenomena which are hard to simulate. Tlbffer@met types of
waves:

e Surging breakers roll onto steep beaches
e Plunging Breakers form tunnels if the beach slope is moderately steep
o Spilling breakers generate foam on gentle sloping beaches

For more detailskaout different types of ocean wayeleck[SNTFHP].

In the first part of this chapter, | introduce here briefly the main characteristics of an ocean
water shader, published by [KRI]. In the second part, | discuss my demo application which
focuses on the most difficult part of the ocean water shadevy beaches. Although, the
NavierStokes equations can handle all the different wave formations, their computational
expense is huge. The other approaches di
different type of waves, and the heigigld representation has several limitations also. For all
the reasons | mentioned earlier, | simulate sinusoidal waves moving on afledeght

6.2 Water Shader in WWII Online: Battleground Europe

[KRI] published a complex water rendering approach, which was usethe game
WWiIl:online as well (see [WW20L]). Theriginal presentation can be listened-lore as

well [KRIPRES] (in Russian). The basiof their water shader is a general illumination
equation, like the ones discussed in the chap#il Ambient light, diffuse light and also
specular lights are takeinto account. The Fresnel term is approximated with the cheapest
method discussed iAlternative solutions: Simpler solutiorThe following screetshot on
Figure6-1 visualizes the result:

Figure 6-1: Screen shot of the water in WWII:Online.
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6.2.1 Optimizations

Approximations and heuristics were applied in their water shader to get fiagherrates
They used the following general ideas:

« Using cheaper calculations instead of masturateones.

« Refreshing the reflection map only a few times in a second. (Thisesalt artifacts
when the movement is too fast.

o Optimizing the shader code with different compilers.

These optimizationsaare needed to rendesisually convincing water surfasereattime.
Although, the list containgeneralideas only, they are useful rf@very computationally
complex scene. The details of the approaches need to be adjusted to the required results.

6.2.2 Combining layers

To get a visually convincing scengeveral differentechniquesrecombined. There are areas

of water and land, but the lwar between them is much more complex. There is a wavy area
around the coastwaves are going towards the beach. Where the water is shallow caustics are
also visible. Finally, there is a zone, where the waves run out over theTsa visualized

on Figure6-2:

Wayy area

Figure 6-2: Layers of the water rendering technique in
[KRI].

For a complex wateshader, the alternatives must be chosen after exhaustive consideration.
The deepness of water, the viewing angles, the viewing distances and the length of waves ai
just some of the factors, whicleedto be taken into account.

6.2.3 CoastalWaveFormation

In their approach complex mathematical equations are used to determine the wave formation:
The waves need to go towards the beach, and their sinusbhidpes aralisplaced by
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functions depending on horizontal coordinates, time and ontean\e¢iable which influences
the shape like weather conditionl®. For more detailed explanations and mathematical
background, see [KRIFigure6-3 shows theifinal waveformation:

Wave separator amplitude and intensity

Figure 6-3: Wave form in [KRI].

6.2.4 HLSL code

Their shader code differentiates wave types. After the common variable declaration in the first part,
they use 20 GPU instructions to calcel#he reflections by a cube map, to compute the Fresnel term
and the fog effect in the next section. They also usegaeerated normalvectemap to gain
performance. The third part in their shader code calculates the appearance of high quality water. 55
instructions are needed to compute theermutatedtexture coordinates, determine the normal

vectors, weather conditions, and reflected color. Cloud shadow and foam texture is added to the
result as well. The amount of foam is computed by a separate funclioese partsf their shader
codecan be found irAppendix B Ocean Shader Code by [KRI]

6.3 Ocean Shader Demo Application
6.3.1 Introduction

To be able d demonstrate the differences between DirectX S the XNAversiors, |
chose todayos linstdaed of XNADevelepmenXKitos mMardling managed
code in the ocean water demo application. The functdassesare differentand the entire
development needs different approaches in these two development framework.

In XNA we use instances of the Mdddass to handl®bjects which neetb be rendered,

while in DirectX SDK the Mesh class is used for the same purpose. The Model class is more
complex, various Mesh levels can be handled together, but in the DirectX SDK there exist
several functions to ca¢e an object and its properties, while in XNA we can only import
models or directly determine the attributes of the model one by one. Because of this, it is
more comfortable to work with the DirectX SDK now, but XNA will easily replace the
support for maaged development of the DirectX Development Kit later.

In this demo application | demonstrate the steps to create a beach with waves. The main goa
are:

« Creating waves by vertex shader which are going towards the beach
o Applying some other compounds sinigad waves to distort the regular wave shapes
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e Adjusting the wave speed, colors, daytime, reflectance etc. by user input.
e Adding some foam texture for more realistic result

Different approaches are needed to handle sprayrays exact water color etard theyare

out of the scope of this demo application. For specific purposes, the techniques discussed i
chapter2 and4 can be addetb get more realistic scenes, but they need always be fine tuned
nat to destroy the other effects.

6.3.2 Vertices of theWater Surface

| created the vertices of the water surface according to the cdapy LOD Algorithms on

Water Surfaces The grid is always placed in front of the camera to cover only the necessary
part of the scene. The performance profit is enormbagperimented with huge grid sizes,

for example in the final version | use 1¥A00 = 10000 vertice®iggersizes can be handled
reattimeaswell but actwually | dondt render any u
my water surface. The latest graphic cards are much faster than the one | use for developme
(Ati Radeon 960)) but generally other elements are also calculated and rendered not only the
ones which are important for the water surface. The optimal size of the grid always depend:
on the target hardware and on the expected realism.

The approach discussed [BMELAB2] determines the horizontal place of the vertices
relative to the camera only once at the beginning. This means that if we change the angle
between the camera and the water surface, we can extend the visible area to places which &
not covered byhe grid. This can be avoided by application of projected girds as the chapter
Using projected girdslescribes. The demo application for that technique is also available on
line; | dondt need to demonstrate the nsGtmealalp
changinghe angle between the camera and the grid to handle this problem.

Theplaces of the vertices adetermined (also based on the equations described in the chapter
LOD algorithms on water surfaceby these line®f code to conform the window size, aspect
ratio and the size of the skiome as well:

--------------------------------------------------------------------------------------------------------------------------

i float aspectRatio = Camera.AspectRatio*1.55f;

: float d = 4000f / (nx - 1.0f) * (1.0f / (1.0f - (float)i / nx) -

1 1.0f);

Vector3 pos = new Vector3(d, aspectRatio * d * (float)(j - (ny - 1)
.1 2f) I'ny, 0);

. return (object)new CustomVertex.PositionOnly(pos);

The aspect ratio determines the distance between the vertices across the viewing directior
while the variabled helps to determine to coordinates along trewimg direction to cover
approximatelyequalsizeof the screemy the triangles on theenderedicture.

Finally, to get the expected result, the watealigays movednto the front of the camera. The
camera directions form a vector which is used to ggaean inverse of the camera matrix.
This inverse is used to transform the place of the water grid according to the place of the
camera:

. Vector3 pos = new Vector3(Camera.Position.X, Camera.Position.Y, 0);

1 Vector3 dir = Vector3.TransformCoordinate(

: new Vec tor3(Camera.Direction.X, Camera.Direction.Y, 0),

. Matrix.RotationZ((float)Math.PI / 2));






