
38.蒙皮动画模型内容处理器
我们已经可以在X文件的导出系列5蒙皮动画模型中导出包含动画数据的模型，现在就可以自己编写内容处理器将动画数据包含在二进制的xnb文件中，然后在XNA程序中加以播放。但在进入到内容处理器的编写之前，首先需要理解XNA框架中Model类的组织方式。以下代码使用的模型都是X文件的导出系列5蒙皮动画模型导出的那个简陋的人体manSkinningX.X，它包含提右腿和提左腿两个动画。
ModelMesh和ModelBone

这个知识可参见什么是模型Bone和4.8 可视化模型骨骼结构。
简而言之：XNA框架的Model类表示整个模型。而Model中每个可独立运动的网格都对应一个ModelMesh，每个ModelMesh包含顶点、索引、纹理坐标等几何信息（即X文件中的Mesh、MeshNormals、MeshMaterialList、Material、MeshTextureCoords大括号中的数据），而它的位置信息（即X文件中FrameTransformMatrix大括号中的数据，其实就是一个表示相对于父节点偏移的4*4矩阵）存储在ModelBone对象中。两者通过ModelMeshBone中的ParentBone的Index属性联系在一起。
以manSkinningX.X为例，你可以使用在4.8 可视化模型骨骼结构中介绍的方法看到模型的结构：1.在XNA代码的合适地方设置中断，2.插入System.Diagnostics.Debugger.Break();代码，3.编程输出文本，我使用了第3个方法在一个文本文件中获得了这个模型的结构：
Model Bone Information

- Name :

 Index: 0

- Name : Body

 Index: 1

- Name : null

 Index: 2

- Name : Spine

 Index: 3

- Name : Spine_Nub

 Index: 4

- Name : L_Leg

 Index: 5

- Name : null

 Index: 6

- Name : L_Nub

 Index: 7

- Name : R_Leg

 Index: 8

- Name : R_Nub

 Index: 9

Model Mesh Information

- ID : 0

 Name:

 Bone: (2)

由这个文件可以看出，manSkinningX.X只有一个ModelMesh，有10个ModelBone，而ModelMesh链接到索引为2的bone上。这个结构都是由框架默认的Model - XNA Framework处理器导出的，事实上在3DSMAX制作这个模型时，只有6个bone，索引为0，1，2，6的bone都是处理器自行添加的，至于为什么这样我不是很清楚，最不能理解的是为什么L_Leg下要添加一个索引为6的额外的bone，而R_Leg下却不添加。
但如果导出manSkinningKW.X文件的结构，却发现有点不同，只有9个bone。：
Model Bone Information

- Name :

 Index: 0

- Name : Body

 Index: 1

- Name : mesh_Body

 Index: 2

- Name : Spine

 Index: 3

- Name : Spine_Nub

 Index: 4

- Name : L_Leg

 Index: 5

- Name : L_Nub

 Index: 6

- Name : R_Leg

 Index: 7

- Name : R_Nub

 Index: 8

Model Mesh Information

- ID : 0

 Name: mesh_Body

 Bone: mesh_Body (2)
如果导出manSkinningFbx.FBX文件的结构，只有8个bone，好像fbx文件的冗余数据最少：
Model Bone Information

- Name : RootNode

 Index: 0

- Name : Body

 Index: 1

- Name : Spine

 Index: 2

- Name : Spine_Nub

 Index: 3

- Name : L_Leg

 Index: 4

- Name : L_Nub

 Index: 5

- Name : R_Leg

 Index: 6

- Name : R_Nub

 Index: 7

Model Mesh Information

- ID : 0

 Name: Body

 Bone: Body (1)
不过接下去的代码中我还是使用manSkinningX.X进行分析。
Content Pipeline类库中的类层次
ModelMesh和ModelBone位于XNA Framework Class Library中，但要理解内容管道中到底进行了什么处理，你首先需要理解Content Pipeline Class Library中的几个类的层次，如下图所示：

[image: image1]
以下内容来自于XNA帮助文件：

1．ContentItem：提供定义内容（content）时所需的属性，这些内容是使用XNA框架中介文件格式定义的，是所有内容的基类。

2.NodeContent：它定义了本地坐标系统的图形对象的基类。

2.1MeshContent：提供定义一个mesh的各种属性。

一个mesh具有以下特征：
· Mesh是没有关节的。例如，车轮的mesh是和车身的mesh分离的。
· 它可以包含多个材质。例如，车身可以是一个mesh，它的风挡可以使用一个与车的皮质座椅不同的纹理和shader。
· 包含不同channel的顶点可以混合成一个mesh。例如，座椅的几何体包含切线向量，而风挡不需要。但是使用一个单独的mesh可以在材质和顶点格式边界保留拓扑连续性（译者？原文如下：However, using a single mesh preserves topological continuity (shared vertex identities) across material and vertex format boundaries）。
2.2BoneContent：表示一个动画骨骼（Animation skeleton）。动画骨骼（Animation skeleton）是以一个BoneContent对象树表示的，这个树在Transform属性中保存了bind pose。整个骨骼的动画数据存储在根bone的Animations属性中(根bone也是一个BoneContent 对象)。
3．GeometryContent：定义一个geometry batch的各种属性。一个geometry batch是一个mesh的子组件，表示可以提交给GPU进行一次绘制调用的一组齐次几何数据。它包含了索引化的三角形列表(使用一个材质)，其中所有顶点都共享相同的数据通道。 如果顶点在其数据通道中有所不同，则会被设置成唯一的（unique）。Coordinates that require unique vertices on either side of a join create unique vertices（译者：？）。.
4．AnimationContent ：提供表示动画所需的属性。一个动画包含一个数据channel的集合，这个集合表示一组完整的运动，这个运动可以施加在任意数量的bone或刚体上。数据channel存储在Animations dictionary中。对character skinning来说，动画数据通常链接在根bone。但是，它也可能属于任何节点。例如我们使用刚体动画的时候。

ContentItem的子类还有EffectContent，MaterialContent，BitmapContent，TextureContent，FontDescription，因为与本文无关，所以没有列出。
内容管道的调试

为了更好地理解内容管道的处理过程，你还想单步调试项目，但是因为内容管道不是在编译时运行的，所以在SkinnedModelPipeline内容管道项目中设置中断不会起任何作用，需要进行额外的操作，这个方法参考自http://www.cse.msu.edu/~cse473/step5.html。
你需要右击SkinnedModelPipeline，在弹出菜单中选择“属性”，在打开的页面中选择“调试”，点击“启动外部程序”右侧的按钮，找到你的电脑上的MSBuild.exe文件，它通常位于C:\Windows\Microsoft.NET\Framework\v3.5\MSBuild.exe，然后找到项目中的Content处理项目文件，我的电脑上位于F:\StunEngine0.4\TestGame\TestGame\Content\Content.contentproj（这个位置通常不一样，是由你的游戏项目位置决定的）。

[image: image2.png]#iﬁ!ﬁﬂs#i

[&% SQL Server B

\TestGame\Content
\Content.contentprej

最后在SkinnedModelPipeline项目中的SkinnedModelProcessor.cs文件合适位置设置中断，右击SkinnedModelPipeline项目，在弹出菜单中选择调试→启动新项目，程序就会在你中断处停止，你可以单步调试看看到底发生了什么事。

[image: image3.png]T =" =
| @) SimplesrimtionioedProcesso.
2l r———

&) em0

SkinnedModelWindows类库
好了，现在终于可以来研究一下XNA官网上的处理蒙皮动画模型的示例了，原文地址http://creators.xna.com/en-US/sample/skinnedmodel，经过翻译后的文章为蒙皮动画模型(Skinned Model)示例。我同时还参考了《Beginning XNA 3 0 Game Programming FromN ovice to Professional》（以下简称《BeninningXNA》）的第12章：骨骼动画，它的过程写得更加详尽，你应该先看一看11.1 动画类型对动画的概念有个大致的了解。

我想做的事情就是将manSkinningX.X文件中的动画数据经过一定的处理放置在Model类的Tag属性中，这样就可以被XNA程序调用了，此数据如下：

AnimationSet RaiseRight {

Animation Anim-Body {

 { Body }

 AnimationKey {

 4;

 10;

 0;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 160;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 320;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 480;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 640;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 800;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 960;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 1120;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 1280;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 1440;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;;

 }

 }

 Animation Anim-Spine {

 { Spine }

 AnimationKey {

 4;

 10;

 0;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 160;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 320;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 480;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 640;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 800;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 960;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 1120;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 1280;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 1440;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;;

 }

 }

 Animation Anim-Spine_Nub {

 { Spine_Nub }

 AnimationKey {

 4;

 10;

 0;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 160;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 320;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 480;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 640;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 800;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 960;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 1120;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 1280;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 1440;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;;

 }

 }

 Animation Anim-L_Leg {

 { L_Leg }

 AnimationKey {

 4;

 10;

 0;16;-1.000000,0.000648,0.000000,0.000000,0.000648,1.000000,0.000005,0.000000,-0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 160;16;-1.000000,0.000648,0.000000,0.000000,0.000648,1.000000,0.000005,0.000000,-0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 320;16;-1.000000,0.000648,0.000000,0.000000,0.000648,1.000000,0.000005,0.000000,-0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 480;16;-1.000000,0.000648,0.000000,0.000000,0.000648,1.000000,0.000005,0.000000,-0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 640;16;-1.000000,0.000648,0.000000,0.000000,0.000648,1.000000,0.000005,0.000000,-0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 800;16;-1.000000,0.000648,0.000000,0.000000,0.000648,1.000000,0.000005,0.000000,-0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 960;16;-1.000000,0.000648,0.000000,0.000000,0.000648,1.000000,0.000005,0.000000,-0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 1120;16;-1.000000,0.000648,0.000000,0.000000,0.000648,1.000000,0.000005,0.000000,-0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 1280;16;-1.000000,0.000648,0.000000,0.000000,0.000648,1.000000,0.000005,0.000000,-0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 1440;16;-1.000000,0.000648,0.000000,0.000000,0.000648,1.000000,0.000005,0.000000,-0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;;

 }

 }

 Animation Anim-L_Nub {

 { L_Nub }

 AnimationKey {

 4;

 10;

 0;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 160;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 320;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 480;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 640;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 800;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 960;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 1120;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 1280;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 1440;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;;

 }

 }

 Animation Anim-R_Leg {

 { R_Leg }

 AnimationKey {

 4;

 10;

 0;16;-1.000000,-0.000073,-0.000000,0.000000,-0.000073,1.000000,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 160;16;-0.999639,0.026860,-0.000000,0.000000,0.026860,0.999639,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 320;16;-0.995098,0.098892,-0.000000,0.000000,0.098892,0.995098,0.000005,0.000000,0.000001,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 480;16;-0.979352,0.202164,-0.000000,0.000000,0.202164,0.979352,0.000005,0.000000,0.000001,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 640;16;-0.946857,0.321654,-0.000000,0.000000,0.321654,0.946857,0.000005,0.000000,0.000002,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 800;16;-0.897005,0.442020,-0.000000,0.000000,0.442020,0.897005,0.000005,0.000000,0.000003,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 960;16;-0.835498,0.549493,-0.000000,0.000000,0.549493,0.835498,0.000005,0.000000,0.000003,0.000004,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 1120;16;-0.773614,0.633657,-0.000000,0.000000,0.633657,0.773614,0.000005,0.000000,0.000004,0.000004,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 1280;16;-0.725895,0.687805,-0.000000,0.000000,0.687805,0.725895,0.000005,0.000000,0.000004,0.000004,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 1440;16;-0.707107,0.707107,-0.000000,0.000000,0.707107,0.707107,0.000006,0.000000,0.000004,0.000004,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;;

 }

 }

 Animation Anim-R_Nub {

 { R_Nub }

 AnimationKey {

 4;

 10;

 0;16;1.000000,-0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714412,-0.000000,0.000002,1.000000;;,

 160;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,9.714414,-0.000000,0.000002,1.000000;;,

 320;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,0.000000,0.000000,-0.000000,-0.000000,1.000000,0.000000,9.714414,-0.000000,0.000002,1.000000;;,

 480;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714414,-0.000000,0.000003,1.000000;;,

 640;16;1.000000,-0.000000,0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714414,-0.000000,0.000003,1.000000;;,

 800;16;1.000000,-0.000000,0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,0.000000,0.000003,1.000000;;,

 960;16;1.000000,-0.000000,0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,-0.000000,1.000000,0.000000,9.714413,0.000000,0.000003,1.000000;;,

 1120;16;1.000000,-0.000000,-0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,9.714413,-0.000000,0.000003,1.000000;;,

 1280;16;1.000000,-0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,0.000000,-0.000000,-0.000000,1.000000,0.000000,9.714414,-0.000000,0.000002,1.000000;;,

 1440;16;1.000000,-0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,-0.000000,1.000000,0.000000,9.714414,0.000000,0.000002,1.000000;;;

 }

 }

}

AnimationSet RaiseLeft {

 Animation Anim-Body {

 { Body }

 AnimationKey {

 4;

 10;

 0;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 160;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 320;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 480;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 640;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 800;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 960;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 1120;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 1280;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;,

 1440;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,3.000000,0.000000,0.000000,1.000000;;;

 }

 }

 Animation Anim-Spine {

 { Spine }

 AnimationKey {

 4;

 10;

 0;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 160;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 320;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 480;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 640;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 800;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 960;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 1120;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 1280;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;,

 1440;16;0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,-1.000000,0.000000,-1.000000,0.000000,0.000000,0.000000,0.000000,10.000000,-0.000000,1.000000;;;

 }

 }

 Animation Anim-Spine_Nub {

 { Spine_Nub }

 AnimationKey {

 4;

 10;

 0;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 160;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 320;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 480;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 640;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 800;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 960;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 1120;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 1280;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;,

 1440;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,8.358768,0.000000,0.000000,1.000000;;;

 }

 }

 Animation Anim-L_Leg {

 { L_Leg }

 AnimationKey {

 4;

 10;

 0;16;-0.999744,0.022619,0.000000,0.000000,0.022619,0.999744,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 160;16;-0.996618,0.082170,0.000000,0.000000,0.082170,0.996618,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 320;16;-0.985559,0.169334,0.000000,0.000000,0.169334,0.985559,0.000005,0.000000,0.000001,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 480;16;-0.961913,0.273356,0.000000,0.000000,0.273356,0.961913,0.000005,0.000000,0.000001,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 640;16;-0.923755,0.382983,0.000000,0.000000,0.382983,0.923755,0.000005,0.000000,0.000002,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 800;16;-0.873151,0.487449,0.000000,0.000000,0.487449,0.873151,0.000005,0.000000,0.000003,0.000005,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 960;16;-0.816258,0.577687,0.000000,0.000000,0.577687,0.816258,0.000005,0.000000,0.000003,0.000004,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 1120;16;-0.762399,0.647107,0.000000,0.000000,0.647107,0.762399,0.000005,0.000000,0.000003,0.000004,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 1280;16;-0.722472,0.691400,0.000000,0.000000,0.691400,0.722472,0.000005,0.000000,0.000004,0.000004,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;,

 1440;16;-0.707107,0.707107,0.000000,0.000000,0.707107,0.707107,0.000005,0.000000,0.000004,0.000004,-1.000000,0.000000,0.000000,0.000000,-3.000000,1.000000;;;

 }

 }

 Animation Anim-L_Nub {

 { L_Nub }

 AnimationKey {

 4;

 10;

 0;16;1.000000,0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,9.714414,-0.000000,0.000002,1.000000;;,

 160;16;1.000000,-0.000000,-0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,-0.000000,-0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 320;16;1.000000,0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,9.714413,0.000000,0.000002,1.000000;;,

 480;16;1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,0.000000,-0.000000,-0.000000,1.000000,0.000000,9.714413,0.000000,0.000002,1.000000;;,

 640;16;1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714414,0.000000,0.000002,1.000000;;,

 800;16;1.000000,-0.000000,-0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,9.714414,-0.000000,0.000002,1.000000;;,

 960;16;1.000000,-0.000000,0.000000,0.000000,-0.000000,1.000000,0.000000,0.000000,-0.000000,-0.000000,1.000000,0.000000,9.714414,0.000000,0.000002,1.000000;;,

 1120;16;1.000000,-0.000000,-0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,-0.000000,-0.000000,1.000000,0.000000,9.714415,-0.000000,0.000002,1.000000;;,

 1280;16;1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,0.000000,0.000002,1.000000;;,

 1440;16;1.000000,0.000000,-0.000000,0.000000,0.000000,1.000000,0.000000,0.000000,0.000000,0.000000,1.000000,0.000000,9.714414,0.000000,0.000002,1.000000;;;

 }

 }

 Animation Anim-R_Leg {

 { R_Leg }

 AnimationKey {

 4;

 10;

 0;16;-1.000000,0.000916,-0.000000,0.000000,0.000916,1.000000,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 160;16;-1.000000,0.000916,-0.000000,0.000000,0.000916,1.000000,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 320;16;-1.000000,0.000916,-0.000000,0.000000,0.000916,1.000000,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 480;16;-1.000000,0.000916,-0.000000,0.000000,0.000916,1.000000,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 640;16;-1.000000,0.000916,-0.000000,0.000000,0.000916,1.000000,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 800;16;-1.000000,0.000916,-0.000000,0.000000,0.000916,1.000000,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 960;16;-1.000000,0.000916,-0.000000,0.000000,0.000916,1.000000,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 1120;16;-1.000000,0.000916,-0.000000,0.000000,0.000916,1.000000,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 1280;16;-1.000000,0.000916,-0.000000,0.000000,0.000916,1.000000,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;,

 1440;16;-1.000000,0.000916,-0.000000,0.000000,0.000916,1.000000,0.000005,0.000000,0.000000,0.000005,-1.000000,0.000000,0.000000,-0.000001,3.000000,1.000000;;;

 }

 }

 Animation Anim-R_Nub {

 { R_Nub }

 AnimationKey {

 4;

 10;

 0;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 160;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 320;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 480;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 640;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 800;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 960;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 1120;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 1280;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;,

 1440;16;1.000000,-0.000000,-0.000000,0.000000,-0.000000,1.000000,-0.000000,0.000000,-0.000000,0.000000,1.000000,0.000000,9.714413,-0.000000,0.000002,1.000000;;;

 }

 }

}

我们需要创建三个类Keyframe，AnimationClip，SkinningData存储这些数据，具体解释可参见11.2 XNA中的骨骼动画，因为这些数据在XNA程序和内容管道中都要用到，所以把这三个类放置在一个新的类库项目中，《Beginning XNA》和官网例子区别之一：《Beginning XNA》中这个类库名为AnimatedModelContentWin，官网中名为SkinnedModelWindows。
关键帧Keyframe类

关键帧是构成一个动画的最小单位，其中最关键的数据就是一个矩阵，X文件中AnimationKey中的一组16个数据即对于一个关键帧变换矩阵。因此建立以下Keyframe.cs类：
namespace SkinnedModel

{

 /// <summary>

 /// 关键帧，表示一个bone在一个时刻的位置。

 /// </summary>

 public class Keyframe

 {

 /// <summary>

 /// 创建一个Keyframe对象。

 /// </summary>

 public Keyframe(int bone, TimeSpan time, Matrix transform)

 {

 Bone = bone;

 Time = time;

 Transform = transform;

 }

 /// <summary>

 /// 用于XNB deserializer的私用构造函数

 /// </summary>

 private Keyframe()

 {

 }

 /// <summary>

 /// 获取此关键帧的bone索引

 /// </summary>

 [ContentSerializer]

 public int Bone { get; private set; }

 /// <summary>

 /// 获取此关键帧离开所属动画片段开始时刻的时间

 /// </summary>

 [ContentSerializer]

 public TimeSpan Time { get; private set; }

 /// <summary>

 /// 获取此关键帧的bone变换矩阵
 /// </summary>

 [ContentSerializer]

 public Matrix Transform { get; private set; }

 }

}

区别之二：《Beginning XNA》中关键帧按时间排序的代码就在这个类中实现，官网中在内容管道的模型处理器中实现。
动画片段AnimationClip类
而一组关键帧就构成了一个动画片段，对应X文件中AnimationSet大括号中的所有内容，因此建立以下AnimationClip.cs类：

namespace SkinnedModel

{

 /// <summary>

 /// 一个动画片段（AnimationClip）对应Microsoft.Xna.Framework.Content.Pipeline.Graphics.AnimationContent类型。

 /// 它保存了一个动画的所有关键帧。

 /// </summary>

 public class AnimationClip

 {

 /// <summary>

 /// 创建一个AnimationClip对象

 /// </summary>

 public AnimationClip(TimeSpan duration, List<Keyframe> keyframes)

 {

 Duration = duration;

 Keyframes = keyframes;

 }

 /// <summary>

 /// 用于XNB deserializer的私有构造函数

 /// </summary>

 private AnimationClip()

 {

 }

 /// <summary>

 /// 获取动画的时间长度

 /// </summary>

 [ContentSerializer]

 public TimeSpan Duration { get; private set; }

 /// <summary>

 /// 获取包含所有关键帧的集合，关键帧需要根据时间排序

 /// </summary>

 [ContentSerializer]

 public List<Keyframe> Keyframes { get; private set; }

 }

}

区别之三：《Beginning XNA》中这个类叫做AnimationData，并多了个表示此动画片段名称的Name属性，Keyframes使用的是数组形式。官网中在这个名称属性在SkinningData类中，放在dictionary的key中，Keyframes使用的是泛型集合。
动画数据SkinningData类
最后是保存绘制一个蒙皮动画对象所需的所有数据的SkinningData.cs类，我们自定义处理器的最终目的就是得到这个类，并将它存储在模型的Tag属性中，它对应X文件中所有AnimationSet之下的内容（当然还需经过一些数据的组织）。代码如下：

namespace SkinnedModel

{

 /// <summary>

 /// 保存绘制一个蒙皮动画对象所需的所有数据，它存储在Model的Tag属性中。

 /// </summary>

 public class SkinningData

 {

 /// <summary>

 /// 创建一个SkinningData对象

 /// </summary>

 public SkinningData(Dictionary<string, AnimationClip> animationClips,List<Matrix> bindPose, List<Matrix> inverseBindPose,List<int> skeletonHierarchy)

 {

 AnimationClips = animationClips;

 BindPose = bindPose;

 InverseBindPose = inverseBindPose;

 SkeletonHierarchy = skeletonHierarchy;

 }

 /// <summary>

 /// 用于XNB deserializer的私有构造函数

 /// </summary>

 private SkinningData()

 {

 }

 /// <summary>

 /// 获取动画片段的集合。这些动画片段存储在一个dictionary中，动画片段的名称，如"Walk", "Run","JumpReallyHigh"等作为dictionary的键。

 /// </summary>

 [ContentSerializer]

 public Dictionary<string, AnimationClip> AnimationClips { get; private set; }

 /// <summary>

 /// 骨骼中每个bone的Bindpose矩阵，与父bone相联系

 /// </summary>

 [ContentSerializer]

 public List<Matrix> BindPose { get; private set; }

 /// <summary>

 /// 骨骼中每个bone的顶点至bone空间的转换矩阵

 /// </summary>

 [ContentSerializer]

 public List<Matrix> InverseBindPose { get; private set; }

 /// <summary>

 /// 对骨骼中的每个bone的父bone索引

 /// </summary>

 [ContentSerializer]

 public List<int> SkeletonHierarchy { get; private set; }

 }

}

区别之四：《Beginning XNA》中这个类叫做AnimatedModelData，动画片段的集合使用了数组，父bone索引的名称为bonesParent。官网中在动画片段的集合作为一个dictionary的vlaue，它的key为对应动画片段的名称，父bone索引的名称为SkeletonHierarchy。

在SkinnedModelWindows项目中还包含一个AnimationPlayer.cs类，但是这个类与本教程无关，将在下一个教程中讨论。

准备好数据类后，下面就可以讨论内容管道处理器了。

SkinnedModelPipeline处理器
《Beginning XNA》和XNA官网的例子本质上是相同的，只不过官网的例子多做了几个检查工作，更加严密点而已，所以以下代码以官网的例子为基础，但你也可以参见11.3 Animated Model Processor获取详尽的解释。以下是代码：
/// <summary>

/// 重写Process方法，此方法将内容管道的NodeContent树中间格式转换为包含动画数据的Content对象

/// </summary>

public override ModelContent Process(NodeContent input,ContentProcessorContext context)

{

 // 确认这个mesh包含我们知道如何处理的数据
ValidateMesh(input, context, null);

 // 获取骨骼的根bone

 BoneContent skeleton = MeshHelper.FindSkeleton(input);

 if (skeleton == null)

 throw new InvalidContentException("未找到输入的skeleton。");

// We don't want to have to worry about different parts of the model being
// in different local coordinate systems, so let's just bake everything.
// 原文使用了Bake一词，译为烘焙，为3D程序中的一个专有名词，这里的操作就是计算每个bone的绝对变换

FlattenTransforms(input, skeleton);

 // 将skeleton的层次结构转换为一个BoneContent集合
 IList<BoneContent> bones = MeshHelper.FlattenSkeleton(skeleton);

 if (bones.Count > MaxBones)

 {

 throw new InvalidContentException(string.Format("骨骼包含{0}个bone，但最大只支持{1}个。",bones.Count, MaxBones));

 }

 List<Matrix> bindPose = new List<Matrix>();

 List<Matrix> inverseBindPose = new List<Matrix>();

 List<int> skeletonHierarchy = new List<int>();

// 读取bind pose和骨骼层次数据
 foreach (BoneContent bone in bones)

 {

 bindPose.Add(bone.Transform);

 inverseBindPose.Add(Matrix.Invert(bone.AbsoluteTransform));

 skeletonHierarchy.Add(bones.IndexOf(bone.Parent as BoneContent));

 }

 // 将动画数据转换为可实时运行的AnimationClip格式

 Dictionary<string, AnimationClip> animationClips;

 animationClips = ProcessAnimations(skeleton.Animations, bones);

 // 调用基类的Process方法转换模型数据

 ModelContent model = base.Process(input, context);

 // 将自定义动画数据存储在模型的Tag属性中

 model.Tag = new SkinningData(animationClips, bindPose,inverseBindPose, skeletonHierarchy);

 return model;

}

在重写的Process方法一开始调用ValidateMesh方法检查模型是否符合需要，在ValidateMesh方法中还调用了MeshHasSkinning方法，这两个方法主要检查模型制作时是否有几何体链接到骨骼的情况，如果有就会被删除，所以在X文件的导出系列5蒙皮动画模型中怪物的眼球就属于这种情况，被这个处理器处理后就不会被显示。第二是模型必须包含蒙皮数据。

/// <summary>

/// 确认这个mesh包含我们知道如何处理的数据

/// </summary>

static void ValidateMesh(NodeContent node, ContentProcessorContext context, string parentBoneName)

{

 MeshContent mesh = node as MeshContent;

 if (mesh != null)

 {

 // 确认mesh.

 if (parentBoneName != null)

 {

 context.Logger.LogWarning(null, null, "Mesh {0}是bone {1}的一个子节点，而SkinnedModelProcessor " +

 "无法正确处理作为bone子节点的mesh。", mesh.Name, parentBoneName);

 }

 if (!MeshHasSkinning(mesh))

 {

 context.Logger.LogWarning(null, null,"Mesh {0} 不包含skinning信息，所以会被删除",mesh.Name);

 mesh.Parent.Children.Remove(mesh);

 return;

 }

 }

 else if (node is BoneContent)

 {

 // 如果此节点是一个BoneContent，则我们需要记下它的名称用于进一步检查。

 parentBoneName = node.Name;

 }

 // 递归检测子节点 (需要遍历子节点集合的副本，因为有可能在ValidateMesh过程中会删除某些子节点)

 foreach (NodeContent child in new List<NodeContent>(node.Children))

 ValidateMesh(child, context, parentBoneName);

}

/// <summary>

/// 检测mesh是否包含skininng信息

/// </summary>

static bool MeshHasSkinning(MeshContent mesh)

{

 foreach (GeometryContent geometry in mesh.Geometry)

 {

 if (!geometry.Vertices.Channels.Contains(VertexChannelNames.Weights()))

 return false;

 }

 return true;

}

然后使用内容管道自带的MeshHelper.FindSkeleton方法获取根bone，它是一个BoneContent对象。

接着调用FlattenTransforms方法重新计算模型每个bone的绝对变换，在FlattenTransforms方法中调用了XNA自带的MeshHelper.TransformScene 方法，FlattenTransforms方法代码如下：
/// <summary>

/// 烘焙模型几何体的变换矩阵，这样所有对象都在同一个坐标系中。

/// </summary>

static void FlattenTransforms(NodeContent node, BoneContent skeleton)

{

 foreach (NodeContent child in node.Children)

 {

 // 不要处理根节点，因为它是特殊的

 if (child == skeleton)

 continue;

 // 烘焙几何体的本地变换

 MeshHelper.TransformScene(child, child.Transform);

 // 烘焙完成后，我们就可以将本地坐标系设置为单位矩阵

 child.Transform = Matrix.Identity;

 // 递归处理子节点

 FlattenTransforms(child, skeleton);

 }

}

区别之五：《Beginning XNA》中并不包含ValidateMesh和FlattenTransforms方法。
然后调用XNA自带的MeshHelper.FlattenSkeleton方法将Skeleton中层次结构的BoneContent转换为一个BoneContent集合。

还记得我们最终要获取的SkinningData有4个属性吗？前三个属性很容易获取，由以下代码实现：
List<Matrix> bindPose = new List<Matrix>();

List<Matrix> inverseBindPose = new List<Matrix>();

List<int> skeletonHierarchy = new List<int>();

// 读取bind pose和骨骼层次数据

foreach (BoneContent bone in bones)

{

 bindPose.Add(bone.Transform);

 inverseBindPose.Add(Matrix.Invert(bone.AbsoluteTransform));

skeletonHierarchy.Add(bones.IndexOf(bone.Parent as BoneContent));
}

难的数据是第4个，调用了ProcessAnimations处理所有动画，而ProcessAnimations又调用了ProcessAnimation处理每一个动画，代码如下：
/// <summary>

/// 将内容管道的AnimationContentDictionary对象转换为可实时运行的AnimationClip格式

/// </summary>

static Dictionary<string, AnimationClip> ProcessAnimations(AnimationContentDictionary animations, IList<BoneContent> bones)

{

 // 创建一个dictionary将bone名称对应bone索引

 Dictionary<string, int> boneMap = new Dictionary<string, int>();

 // 填充这个dictionary

 for (int i = 0; i < bones.Count; i++)

 {

 string boneName = bones[i].Name;

 if (!string.IsNullOrEmpty(boneName))

 boneMap.Add(boneName, i);

 }

 // 依次转换每个动画片段

 Dictionary<string, AnimationClip> animationClips;

 animationClips = new Dictionary<string, AnimationClip>();

 foreach (KeyValuePair<string, AnimationContent> animation in animations)

 {

 AnimationClip processed = ProcessAnimation(animation.Value, boneMap);

 animationClips.Add(animation.Key, processed);

 }

 if (animationClips.Count == 0)

 {

 throw new InvalidContentException("输入文件不包含任何动画。");

 }

 return animationClips;

}

/// <summary>

/// 将内容管道的AnimationContentDictionary对象转换为可实时运行的AnimationClip格式

/// </summary>

static AnimationClip ProcessAnimation(AnimationContent animation,Dictionary<string, int> boneMap)

{

 List<Keyframe> keyframes = new List<Keyframe>();

 // 遍历每个动画通道

 foreach (KeyValuePair<string, AnimationChannel> channel in

 animation.Channels)

 {

 // 获取当前通道控制的bone索引

 int boneIndex;

 if (!boneMap.TryGetValue(channel.Key, out boneIndex))

 {

 throw new InvalidContentException(string.Format(

 "未在bone'{0}'中找到动画数据, " +

 "它不是骨骼的一部分。", channel.Key));

 }

 // 转换关键帧数据

 foreach (AnimationKeyframe keyframe in channel.Value)

 {

 keyframes.Add(new Keyframe(boneIndex, keyframe.Time,keyframe.Transform));

 }

 }

 // 根据时间对关键帧排序

 keyframes.Sort(CompareKeyframeTimes);

 if (keyframes.Count == 0)

 throw new InvalidContentException("动画不包含关键帧");

 if (animation.Duration <= TimeSpan.Zero)

 throw new InvalidContentException("动画持续时间为0");

 return new AnimationClip(animation.Duration, keyframes);

}

/// <summary>

/// 将关键帧根据时间升序排序

/// </summary>

static int CompareKeyframeTimes(Keyframe a, Keyframe b)

{

 return a.Time.CompareTo(b.Time);

}

要理解上述过程，你一定要对动画数据的组织结构有所了解，强烈建议设置中断看看动画数据到底在哪里，它们是如何组织的。

[image: image4.png]Macrosoft K. Framemork Content. Ppeine,Graphcs BoneContent)
Dacaoft o Framenork ontnt. Poene Gaphcs BoneCntent)

Dacsoft n Framevork. ontent. Poeine raphcs SooeCntent)

{QULOMIZ IO MIA0) (VZLOMEZONE3: LM2E0) (3151 320 W30 M4} QIALO A2 0 W30 44 1)}
Quasoft Ko Frmencrk Content PpeneGaphes AniatonConten sy}

Duasftin Framenork. Content Poeine Graphes AnatonContenDctanan)

2

Camt-2

Roseee

RosRt

Camte2

由上述截图可以看出，动画数据位于skeleton下的Animations中，Animations的类型是AnimationContentDictionary，而AnimationContentDictionary的Key为动画片段名称，在本例中有两个动画片段：RaiseLeft和RaiseRight，AnimationContentDictionary的Value即动画片段，对应内容管道中的AnimationContent类。

在AnimationContent类之下有一个Channels属性，对应AnimationChannelDictionary类，AnimationChannelDictionary类的Key对应bone，本例中为6个：Spine，Spine_Nub，L_Leg，L_Nub，R_Leg，R_Nub，AnimationChannelDictionary类的Value是一个AnimationChannel对象，此对象包含了类型为AnimationKeyframe的关键帧集合。

在AnimationContent类之下还有一个Duration的属性表示动画片段的时间长度。
只有理解了以上知识，你才会真正了解提取动画进行的操作。

提取完动画后，使用以下代码将处理好的SkinningData数据存储在模型的Tag属性中：
// 将自定义动画数据存储在模型的Tag属性中

model.Tag = new SkinningData(animationClips, bindPose, inverseBindPose, skeletonHierarchy);
区别之六：《Beginning XNA》中还要编写Content Type Writers和Content Type Readers，而在XNA3.1中可以通过反射实现，无需此代码。

最后，在官网的例子中还编写代码实现了自定义Effect，这个代码在我的引擎中并不需要，因为使用自定义Effect我是在引擎中的实现的。只要不使用BasicEffect而使用自定义effect，XNA官网的很多例子都用到了类似的代码：
/// <summary>

/// 改变材质使之可以使用蒙皮模型的effect.

/// </summary>

protected override MaterialContent ConvertMaterial(MaterialContent material,

 ContentProcessorContext context)

{

 BasicMaterialContent basicMaterial = material as BasicMaterialContent;

 if (basicMaterial == null)

 {

 throw new InvalidContentException(string.Format(

 "SkinnedModelProcessor只支持BasicMaterialContent，" +

 "但输入的网格使用了{0}.", material.GetType()));

 }

 EffectMaterialContent effectMaterial = new EffectMaterialContent();

 // 存储effect的引用

 string effectPath = Path.GetFullPath("SkinnedModel.fx");

 effectMaterial.Effect = new ExternalReference<EffectContent>(effectPath);

 // 将纹理设置从输入的BasicMaterialContent对象复制到新材质中

 if (basicMaterial.Texture != null)

 effectMaterial.Textures.Add("Texture", basicMaterial.Texture);

 // 调用基类的ConvertMaterial方法

 return base.ConvertMaterial(effectMaterial, context);

}

好了，至此已经使用自定义模型处理器完成了动画数据的处理，但工作只完成了一半，下一个教程将讨论如何在XNA代码中使用这些动画数据。
ContentItem

NodeContent

GeometryContent

AnimationContent

MeshContent

BoneContent

 5 / 30

