3D系列4.19 渐变的天空球

现在我们已经获得了一个云层贴图,让我们编写一个technique将贴图显示在天空球上,这会产生一个渐变的天空球。

这个technique很简单。如果看一下室外,大气层的顶部的颜色要比水平面深,让我们在HLSL中实现这个效果。

通常,我们会首先定义顶点着色器和像素着色器的输出结构:

//------- Technique: SkyDome -------- 
struct SDVertexToPixel
{
    float4 Position : POSITION; 
    float2 TextureCoords : TEXCOORD0; 
    float4 ObjectPosition : TEXCOORD1; 
}; 

struct SDPixelToFrame 
{
    float4 Color : COLOR0; 
};

顶点着色器需要将纹理坐标和每个顶点的位置传递到像素着色器中。顶点的位置总是保持不变的,无论对象(本例中是天空球)是否旋转、移动或缩放。这让我们可以在像素着色器中定义一个固定的渐变。

下面是顶点着色器:

SDVertexToPixel SkyDomeVS( float4 inPos : POSITION, float2 inTexCoords: TEXCOORD0)
{
    SDVertexToPixel Output = (SDVertexToPixel)0; 
    
    float4x4 preViewProjection = mul (xView, xProjection); 
    float4x4 preWorldViewProjection = mul (xWorld, preViewProjection); 
    Output.Position = mul(inPos, preWorldViewProjection); 
    Output.TextureCoords = inTexCoords; 
    Output. ObjectPosition = inPos; 
    
    return Output; 
} 

你可以看到初始位置和纹理坐标立即被传递到ObjectPos和TextureCoords中。因为天空盒是一个3D模型,需要被转换到2D屏幕坐标,我们通常需要WorldViewProjection 矩阵转换3D位置并将结果传递到Output.Position中。

像素着色器很简单,我本希望最后一章会更难点,但实际上却不是:

SDPixelToFrame SkyDomePS(SDVertexToPixel PSIn) 
{
    SDPixelToFrame Output = (SDPixelToFrame)0; 
    
    float4 topColor = float4(0.3f, 0.3f, 0.8f, 1); 
    float4 bottomColor = 1; 
    float4 baseColor = lerp(bottomColor, topColor, saturate((PSIn. ObjectPosition.y)/0.4f));
    float4 cloudValue = tex2D(TextureSampler, PSIn.TextureCoords).r; 
    Output.Color = lerp(baseColor,1, cloudValue);
    
    return Output; 
} 

你定义了2个颜色:一个是天空顶部的暗蓝色和水平面的白色。然后,基于天空球的当前像素对这两个颜色进行插值。天空球的最高点高度为Y=0.5,所以高于0.4的所有像素为暗蓝色。低于0.4的所有像素的颜色为暗蓝色和白色间的插值。最后,我们从天空纹理的对应像素中查询值,使用这个值对天空颜色和白色进行插值,将云添加到天空球中。

好了!下面只需添加technique定义:

technique SkyDome
{
    pass Pass0
    {
        VertexShader = compile vs_1_1 SkyDomeVS(); 
        PixelShader = compile ps_2_0 SkyDomePS(); 
    }
} 

这样就做好了改变DrawSkydome方法的准备,它现在还是使用Textured technique,我们无需改变太多,事实上,我们只需改变使用的technique名称。

currentEffect.CurrentTechnique = currentEffect.Techniques["SkyDome"]; 

运行代码后,你会看到系列4的最终效果。

最终程序截图

我们在系列4中学习了第一人称相机,多纹理地形,移动的水面,billboard和perlin噪点,我希望你能学到很多东西!

最终的XNA代码如下,红色代码为相对于上一章改变的部分:

using System;
 using System.Collections.Generic;
 using Microsoft.Xna.Framework;
 using Microsoft.Xna.Framework.Audio;
 using Microsoft.Xna.Framework.Content;
 using Microsoft.Xna.Framework.GamerServices;
 using Microsoft.Xna.Framework.Graphics;
 using Microsoft.Xna.Framework.Input;
 using Microsoft.Xna.Framework.Net;
 using Microsoft.Xna.Framework.Storage;
 
 namespace XNAseries4
 {
     public struct VertexMultitextured
     {
         public Vector3 Position;
         public Vector3 Normal;
         public Vector4 TextureCoordinate;
         public Vector4 TexWeights;
 
         public static int SizeInBytes = (3 + 3 + 4 + 4) * sizeof(float);
         public static VertexElement[] VertexElements = new VertexElement[]
          {
              new VertexElement( 0, 0, VertexElementFormat.Vector3, VertexElementMethod.Default, VertexElementUsage.Position, 0 ),
              new VertexElement( 0, sizeof(float) * 3, VertexElementFormat.Vector3, VertexElementMethod.Default, VertexElementUsage.Normal, 0 ),
              new VertexElement( 0, sizeof(float) * 6, VertexElementFormat.Vector4, VertexElementMethod.Default, VertexElementUsage.TextureCoordinate, 0 ),
              new VertexElement( 0, sizeof(float) * 10, VertexElementFormat.Vector4, VertexElementMethod.Default, VertexElementUsage.TextureCoordinate, 1 ),
          };
     }
 
     public class Game1 : Microsoft.Xna.Framework.Game
     {
         GraphicsDeviceManager graphics;
         GraphicsDevice device;
 
         int terrainWidth;
         int terrainLength;
         float[,] heightData;
 
         VertexBuffer terrainVertexBuffer;
         IndexBuffer terrainIndexBuffer;
         VertexDeclaration terrainVertexDeclaration;
 
         VertexBuffer waterVertexBuffer;
         VertexDeclaration waterVertexDeclaration;
 
         VertexBuffer treeVertexBuffer;
         VertexDeclaration treeVertexDeclaration;
 
         Effect effect;
         Effect bbEffect;
         Matrix viewMatrix;
         Matrix projectionMatrix;
         Matrix reflectionViewMatrix;
 
         Vector3 cameraPosition = new Vector3(130, 30, -50);
         float leftrightRot = MathHelper.PiOver2;
         float updownRot = -MathHelper.Pi / 10.0f;
         const float rotationSpeed = 0.3f;
         const float moveSpeed = 30.0f;
         MouseState originalMouseState;
 
         Texture2D grassTexture;
         Texture2D sandTexture;
         Texture2D rockTexture;
         Texture2D snowTexture;
         Texture2D cloudMap;
         Texture2D waterBumpMap;
         Texture2D treeTexture;
         Texture2D treeMap;
 
         Model skyDome;
 
         const float waterHeight = 5.0f;
         RenderTarget2D refractionRenderTarget;
         Texture2D refractionMap;
         RenderTarget2D reflectionRenderTarget;
         Texture2D reflectionMap;
         RenderTarget2D cloudsRenderTarget;
         Texture2D cloudStaticMap;
         VertexPositionTexture[] fullScreenVertices;
         VertexDeclaration fullScreenVertexDeclaration;
 
         Vector3 windDirection = new Vector3(0, 0, 1);
 
         public Game1()
         {
             graphics = new GraphicsDeviceManager(this);
             Content.RootDirectory = "Content";
         }
 
         protected override void Initialize()
         {
             graphics.PreferredBackBufferWidth = 500;
             graphics.PreferredBackBufferHeight = 500;
 
             graphics.ApplyChanges();
             Window.Title = "Riemer's XNA Tutorials -- Series 4";
 
             base.Initialize();
         }
 
         protected override void LoadContent()
         {
             device = GraphicsDevice;
 

            effect = Content.Load<Effect> ("Series4Effects");
            bbEffect = Content.Load<Effect> ("bbEffect");            UpdateViewMatrix();
            projectionMatrix = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, device.Viewport.AspectRatio, 0.3f, 1000.0f);

            Mouse.SetPosition(device.Viewport.Width / 2, device.Viewport.Height / 2);
            originalMouseState = Mouse.GetState();


            skyDome = Content.Load<Model> ("dome"); skyDome.Meshes[0].MeshParts[0].Effect = effect.Clone(device);
            PresentationParameters pp = device.PresentationParameters;
            refractionRenderTarget = new RenderTarget2D(device, pp.BackBufferWidth, pp.BackBufferHeight, 1, device.DisplayMode.Format);
            reflectionRenderTarget = new RenderTarget2D(device, pp.BackBufferWidth, pp.BackBufferHeight, 1, device.DisplayMode.Format);
            cloudsRenderTarget = new RenderTarget2D(device, pp.BackBufferWidth, pp.BackBufferHeight, 1, device.DisplayMode.Format);

            LoadVertices();
            LoadTextures();
        }

        private void LoadVertices()
        {

            Texture2D heightMap = Content.Load<Texture2D> ("heightmap"); LoadHeightData(heightMap);
            VertexMultitextured[] terrainVertices = SetUpTerrainVertices();
            int[] terrainIndices = SetUpTerrainIndices();
            terrainVertices = CalculateNormals(terrainVertices, terrainIndices);
            CopyToTerrainBuffers(terrainVertices, terrainIndices);
            terrainVertexDeclaration = new VertexDeclaration(device, VertexMultitextured.VertexElements);

            SetUpWaterVertices();
            waterVertexDeclaration = new VertexDeclaration(device, VertexPositionTexture.VertexElements);


            Texture2D treeMap = Content.Load<Texture2D> ("treeMap");
            List<Vector3> treeList = GenerateTreePositions(treeMap, terrainVertices);            CreateBillboardVerticesFromList(treeList);

            fullScreenVertices = SetUpFullscreenVertices();
            fullScreenVertexDeclaration = new VertexDeclaration(device, VertexPositionTexture.VertexElements);
        }

        private void LoadTextures()
        {

            grassTexture = Content.Load<Texture2D> ("grass");
            sandTexture = Content.Load<Texture2D> ("sand");
            rockTexture = Content.Load<Texture2D> ("rock");
            snowTexture = Content.Load<Texture2D> ("snow");
            cloudMap = Content.Load<Texture2D> ("cloudMap");
            waterBumpMap = Content.Load<Texture2D> ("waterbump");
            treeTexture = Content.Load<Texture2D> ("tree");
            treeMap = Content.Load<Texture2D> ("treeMap");            cloudStaticMap = CreateStaticMap(32);
        }

        private void LoadHeightData(Texture2D heightMap)
        {
            float minimumHeight = float.MaxValue;
            float maximumHeight = float.MinValue;

            terrainWidth = heightMap.Width;
            terrainLength = heightMap.Height;

            Color[] heightMapColors = new Color[terrainWidth * terrainLength];
            heightMap.GetData(heightMapColors);

            heightData = new float[terrainWidth, terrainLength];
            for (int x = 0; x < terrainWidth; x++)
                for (int y = 0; y < terrainLength; y++)
                {
                    heightData[x, y] = heightMapColors[x + y * terrainWidth].R;
                    if (heightData[x, y] < minimumHeight) minimumHeight = heightData[x, y];
                    if (heightData[x, y] > maximumHeight) maximumHeight = heightData[x, y];
                }

            for (int x = 0; x < terrainWidth; x++)
                for (int y = 0; y < terrainLength; y++)
                    heightData[x, y] = (heightData[x, y] - minimumHeight) / (maximumHeight - minimumHeight) * 30.0f;
        }

        private VertexMultitextured[] SetUpTerrainVertices()
        {
            VertexMultitextured[] terrainVertices = new VertexMultitextured[terrainWidth * terrainLength];

            for (int x = 0; x < terrainWidth; x++)
            {
                for (int y = 0; y < terrainLength; y++)
                {
                    terrainVertices[x + y * terrainWidth].Position = new Vector3(x, heightData[x, y], -y);
                    terrainVertices[x + y * terrainWidth].TextureCoordinate.X = (float)x / 30.0f;
                    terrainVertices[x + y * terrainWidth].TextureCoordinate.Y = (float)y / 30.0f;

                    terrainVertices[x + y * terrainWidth].TexWeights.X = MathHelper.Clamp(1.0f - Math.Abs(heightData[x, y] - 0) / 8.0f, 0, 1);
                    terrainVertices[x + y * terrainWidth].TexWeights.Y = MathHelper.Clamp(1.0f - Math.Abs(heightData[x, y] - 12) / 6.0f, 0, 1);
                    terrainVertices[x + y * terrainWidth].TexWeights.Z = MathHelper.Clamp(1.0f - Math.Abs(heightData[x, y] - 20) / 6.0f, 0, 1);
                    terrainVertices[x + y * terrainWidth].TexWeights.W = MathHelper.Clamp(1.0f - Math.Abs(heightData[x, y] - 30) / 6.0f, 0, 1);

                    float total = terrainVertices[x + y * terrainWidth].TexWeights.X;
                    total += terrainVertices[x + y * terrainWidth].TexWeights.Y;
                    total += terrainVertices[x + y * terrainWidth].TexWeights.Z;
                    total += terrainVertices[x + y * terrainWidth].TexWeights.W;

                    terrainVertices[x + y * terrainWidth].TexWeights.X /= total;
                    terrainVertices[x + y * terrainWidth].TexWeights.Y /= total;
                    terrainVertices[x + y * terrainWidth].TexWeights.Z /= total;
                    terrainVertices[x + y * terrainWidth].TexWeights.W /= total;
                }
            }

            return terrainVertices;
        }

        private int[] SetUpTerrainIndices()
        {
            int[] indices = new int[(terrainWidth - 1) * (terrainLength - 1) * 6];
            int counter = 0;
            for (int y = 0; y < terrainLength - 1; y++)
            {
                for (int x = 0; x < terrainWidth - 1; x++)
                {
                    int lowerLeft = x + y * terrainWidth;
                    int lowerRight = (x + 1) + y * terrainWidth;
                    int topLeft = x + (y + 1) * terrainWidth;
                    int topRight = (x + 1) + (y + 1) * terrainWidth;

                    indices[counter++] = topLeft;
                    indices[counter++] = lowerRight;
                    indices[counter++] = lowerLeft;

                    indices[counter++] = topLeft;
                    indices[counter++] = topRight;
                    indices[counter++] = lowerRight;
                }
            }

            return indices;
        }

        private VertexMultitextured[] CalculateNormals(VertexMultitextured[] vertices, int[] indices)
        {
            for (int i = 0; i < vertices.Length; i++)
                vertices[i].Normal = new Vector3(0, 0, 0);

            for (int i = 0; i < indices.Length / 3; i++)
            {
                int index1 = indices[i * 3];
                int index2 = indices[i * 3 + 1];
                int index3 = indices[i * 3 + 2];

                Vector3 side1 = vertices[index1].Position - vertices[index3].Position;
                Vector3 side2 = vertices[index1].Position - vertices[index2].Position;
                Vector3 normal = Vector3.Cross(side1, side2);

                vertices[index1].Normal += normal;
                vertices[index2].Normal += normal;
                vertices[index3].Normal += normal;
            }

            for (int i = 0; i < vertices.Length; i++)
                vertices[i].Normal.Normalize();

            return vertices;
        }

        private void CopyToTerrainBuffers(VertexMultitextured[] vertices, int[] indices)
        {
            terrainVertexBuffer = new VertexBuffer(device, vertices.Length * VertexMultitextured.SizeInBytes, BufferUsage.WriteOnly);
            terrainVertexBuffer.SetData(vertices);

            terrainIndexBuffer = new IndexBuffer(device, typeof(int), indices.Length, BufferUsage.WriteOnly);
            terrainIndexBuffer.SetData(indices);
        }

        private void SetUpWaterVertices()
        {
            VertexPositionTexture[] waterVertices = new VertexPositionTexture[6];

            waterVertices[0] = new VertexPositionTexture(new Vector3(0, waterHeight, 0), new Vector2(0, 1));
            waterVertices[2] = new VertexPositionTexture(new Vector3(terrainWidth, waterHeight, -terrainLength), new Vector2(1, 0));
            waterVertices[1] = new VertexPositionTexture(new Vector3(0, waterHeight, -terrainLength), new Vector2(0, 0));

            waterVertices[3] = new VertexPositionTexture(new Vector3(0, waterHeight, 0), new Vector2(0, 1));
            waterVertices[5] = new VertexPositionTexture(new Vector3(terrainWidth, waterHeight, 0), new Vector2(1, 1));
            waterVertices[4] = new VertexPositionTexture(new Vector3(terrainWidth, waterHeight, -terrainLength), new Vector2(1, 0));

            waterVertexBuffer = new VertexBuffer(device, waterVertices.Length * VertexPositionTexture.SizeInBytes, BufferUsage.WriteOnly);
            waterVertexBuffer.SetData(waterVertices);
        }


        private void CreateBillboardVerticesFromList(List<Vector3> treeList)        {
            VertexPositionTexture[] billboardVertices = new VertexPositionTexture[treeList.Count * 6];
            int i = 0;
            foreach (Vector3 currentV3 in treeList)
            {
                billboardVertices[i++] = new VertexPositionTexture(currentV3, new Vector2(0, 0));
                billboardVertices[i++] = new VertexPositionTexture(currentV3, new Vector2(1, 0));
                billboardVertices[i++] = new VertexPositionTexture(currentV3, new Vector2(1, 1));

                billboardVertices[i++] = new VertexPositionTexture(currentV3, new Vector2(0, 0));
                billboardVertices[i++] = new VertexPositionTexture(currentV3, new Vector2(1, 1));
                billboardVertices[i++] = new VertexPositionTexture(currentV3, new Vector2(0, 1));
            }

            treeVertexBuffer = new VertexBuffer(device, billboardVertices.Length * VertexPositionTexture.SizeInBytes, BufferUsage.WriteOnly);
            treeVertexBuffer.SetData(billboardVertices);
            treeVertexDeclaration = new VertexDeclaration(device, VertexPositionTexture.VertexElements);
        }


        private List<Vector3> GenerateTreePositions(Texture2D treeMap, VertexMultitextured[] terrainVertices)        {
            Color[] treeMapColors = new Color[treeMap.Width * treeMap.Height];
            treeMap.GetData(treeMapColors);

            int[,] noiseData = new int[treeMap.Width, treeMap.Height];
            for (int x = 0; x < treeMap.Width; x++)
                for (int y = 0; y < treeMap.Height; y++)
                    noiseData[x, y] = treeMapColors[y + x * treeMap.Height].R;


            List<Vector3> treeList = new List<Vector3> ();                        Random random = new Random();

            for (int x = 0; x < terrainWidth; x++)
            {
                for (int y = 0; y < terrainLength; y++)
                {
                    float terrainHeight = heightData[x, y];
                    if ((terrainHeight > 8) && (terrainHeight < 14))
                    {
                        float flatness = Vector3.Dot(terrainVertices[x + y * terrainWidth].Normal, new Vector3(0, 1, 0));
                        float minFlatness = (float)Math.Cos(MathHelper.ToRadians(15));
                        if (flatness > minFlatness)
                        {
                            float relx = (float)x / (float)terrainWidth;
                            float rely = (float)y / (float)terrainLength;

                            float noiseValueAtCurrentPosition = noiseData[(int)(relx * treeMap.Width), (int)(rely * treeMap.Height)];
                            float treeDensity;
                            if (noiseValueAtCurrentPosition > 200)
                                treeDensity = 5;
                            else if (noiseValueAtCurrentPosition > 150)
                                treeDensity = 4;
                            else if (noiseValueAtCurrentPosition > 100)
                                treeDensity = 3;
                            else
                                treeDensity = 0;

                            for (int currDetail = 0; currDetail < treeDensity; currDetail++)
                            {
                                float rand1 = (float)random.Next(1000) / 1000.0f;
                                float rand2 = (float)random.Next(1000) / 1000.0f;
                                Vector3 treePos = new Vector3((float)x - rand1, 0, -(float)y - rand2);
                                treePos.Y = heightData[x, y];
                                treeList.Add(treePos);
                            }
                        }
                    }
                }
            }

            return treeList;
        }

        private Texture2D CreateStaticMap(int resolution)
        {
            Random rand = new Random();
            Color[] noisyColors = new Color[resolution * resolution];
            for (int x = 0; x < resolution; x++)
                for (int y = 0; y < resolution; y++)
                    noisyColors[x + y * resolution] = new Color(new Vector3((float)rand.Next(1000) / 1000.0f, 0, 0));

            Texture2D noiseImage = new Texture2D(device, resolution, resolution, 1, TextureUsage.None, SurfaceFormat.Color);
            noiseImage.SetData(noisyColors);
            return noiseImage;
        }

        private VertexPositionTexture[] SetUpFullscreenVertices()
        {
            VertexPositionTexture[] vertices = new VertexPositionTexture[4];

            vertices[0] = new VertexPositionTexture(new Vector3(-1, 1, 0f), new Vector2(0, 1));
            vertices[1] = new VertexPositionTexture(new Vector3(1, 1, 0f), new Vector2(1, 1));
            vertices[2] = new VertexPositionTexture(new Vector3(-1, -1, 0f), new Vector2(0, 0));
            vertices[3] = new VertexPositionTexture(new Vector3(1, -1, 0f), new Vector2(1, 0));

            return vertices;
        }

        protected override void UnloadContent()
        {
        }

        protected override void Update(GameTime gameTime)
        {
            if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)
                this.Exit();

            float timeDifference = (float)gameTime.ElapsedGameTime.TotalMilliseconds / 1000.0f;
            ProcessInput(timeDifference);

            base.Update(gameTime);
        }

        private void ProcessInput(float amount)
        {
            MouseState currentMouseState = Mouse.GetState();
            if (currentMouseState != originalMouseState)
            {
                float xDifference = currentMouseState.X - originalMouseState.X;
                float yDifference = currentMouseState.Y - originalMouseState.Y;
                leftrightRot -= rotationSpeed * xDifference * amount;
                updownRot -= rotationSpeed * yDifference * amount;
                Mouse.SetPosition(device.Viewport.Width / 2, device.Viewport.Height / 2);
                UpdateViewMatrix();
            }

            Vector3 moveVector = new Vector3(0, 0, 0);
            KeyboardState keyState = Keyboard.GetState();
            if (keyState.IsKeyDown(Keys.Up) || keyState.IsKeyDown(Keys.W))
                moveVector += new Vector3(0, 0, -1);
            if (keyState.IsKeyDown(Keys.Down) || keyState.IsKeyDown(Keys.S))
                moveVector += new Vector3(0, 0, 1);
            if (keyState.IsKeyDown(Keys.Right) || keyState.IsKeyDown(Keys.D))
                moveVector += new Vector3(1, 0, 0);
            if (keyState.IsKeyDown(Keys.Left) || keyState.IsKeyDown(Keys.A))
                moveVector += new Vector3(-1, 0, 0);
            if (keyState.IsKeyDown(Keys.Q))
                moveVector += new Vector3(0, 1, 0);
            if (keyState.IsKeyDown(Keys.Z))
                moveVector += new Vector3(0, -1, 0);
            AddToCameraPosition(moveVector * amount);
        }

        private void AddToCameraPosition(Vector3 vectorToAdd)
        {
            Matrix cameraRotation = Matrix.CreateRotationX(updownRot) * Matrix.CreateRotationY(leftrightRot);
            Vector3 rotatedVector = Vector3.Transform(vectorToAdd, cameraRotation);
            cameraPosition += moveSpeed * rotatedVector;
            UpdateViewMatrix();
        }

        private void UpdateViewMatrix()
        {
            Matrix cameraRotation = Matrix.CreateRotationX(updownRot) * Matrix.CreateRotationY(leftrightRot);

            Vector3 cameraOriginalTarget = new Vector3(0, 0, -1);
            Vector3 cameraOriginalUpVector = new Vector3(0, 1, 0);
            Vector3 cameraRotatedTarget = Vector3.Transform(cameraOriginalTarget, cameraRotation);
            Vector3 cameraFinalTarget = cameraPosition + cameraRotatedTarget;
            Vector3 cameraRotatedUpVector = Vector3.Transform(cameraOriginalUpVector, cameraRotation);

            viewMatrix = Matrix.CreateLookAt(cameraPosition, cameraFinalTarget, cameraRotatedUpVector);

            Vector3 reflCameraPosition = cameraPosition;
            reflCameraPosition.Y = -cameraPosition.Y + waterHeight * 2;
            Vector3 reflTargetPos = cameraFinalTarget;
            reflTargetPos.Y = -cameraFinalTarget.Y + waterHeight * 2;

            Vector3 cameraRight = Vector3.Transform(new Vector3(1, 0, 0), cameraRotation);
            Vector3 invUpVector = Vector3.Cross(cameraRight, reflTargetPos - reflCameraPosition);

            reflectionViewMatrix = Matrix.CreateLookAt(reflCameraPosition, reflTargetPos, invUpVector);
        }

        protected override void Draw(GameTime gameTime)
        {
            float time = (float)gameTime.TotalGameTime.TotalMilliseconds / 100.0f;

            DrawRefractionMap();
            DrawReflectionMap();
            GeneratePerlinNoise(time);

            device.Clear(ClearOptions.Target | ClearOptions.DepthBuffer, Color.White, 1.0f, 0);
            DrawSkyDome(viewMatrix);
            DrawTerrain(viewMatrix);
            DrawWater(time);
            DrawBillboards(viewMatrix);

            base.Draw(gameTime);
        }

        private void DrawTerrain(Matrix currentViewMatrix)
        {
            effect.CurrentTechnique = effect.Techniques["MultiTextured"];
            effect.Parameters["xTexture0"].SetValue(sandTexture);
            effect.Parameters["xTexture1"].SetValue(grassTexture);
            effect.Parameters["xTexture2"].SetValue(rockTexture);
            effect.Parameters["xTexture3"].SetValue(snowTexture);

            Matrix worldMatrix = Matrix.Identity;
            effect.Parameters["xWorld"].SetValue(worldMatrix);
            effect.Parameters["xView"].SetValue(currentViewMatrix);
            effect.Parameters["xProjection"].SetValue(projectionMatrix);

            effect.Parameters["xEnableLighting"].SetValue(true);
            effect.Parameters["xAmbient"].SetValue(0.4f);
            effect.Parameters["xLightDirection"].SetValue(new Vector3(-0.5f, -1, -0.5f));

            effect.Begin();
            foreach (EffectPass pass in effect.CurrentTechnique.Passes)
            {
                pass.Begin();

                device.Vertices[0].SetSource(terrainVertexBuffer, 0, VertexMultitextured.SizeInBytes);
                device.Indices = terrainIndexBuffer;
                device.VertexDeclaration = terrainVertexDeclaration;

                int noVertices = terrainVertexBuffer.SizeInBytes / VertexMultitextured.SizeInBytes;
                int noTriangles = terrainIndexBuffer.SizeInBytes / sizeof(int) / 3;
                device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, noVertices, 0, noTriangles);

                pass.End();
            }
            effect.End();
        }

        private void DrawSkyDome(Matrix currentViewMatrix)
        {
            device.RenderState.DepthBufferWriteEnable = false;

            Matrix[] modelTransforms = new Matrix[skyDome.Bones.Count];
            skyDome.CopyAbsoluteBoneTransformsTo(modelTransforms);

            Matrix wMatrix = Matrix.CreateTranslation(0, -0.3f, 0) * Matrix.CreateScale(100) * Matrix.CreateTranslation(cameraPosition);
            foreach (ModelMesh mesh in skyDome.Meshes)
            {
                foreach (Effect currentEffect in mesh.Effects)
                {
                    Matrix worldMatrix = modelTransforms[mesh.ParentBone.Index] * wMatrix;

                     currentEffect.CurrentTechnique = currentEffect.Techniques["SkyDome"];
                     currentEffect.Parameters["xWorld"].SetValue(worldMatrix);
                     currentEffect.Parameters["xView"].SetValue(currentViewMatrix);
                     currentEffect.Parameters["xProjection"].SetValue(projectionMatrix);
                     currentEffect.Parameters["xTexture"].SetValue(cloudMap);
                 }
                 mesh.Draw();
             }
             device.RenderState.DepthBufferWriteEnable = true;
         }
 
         private Plane CreatePlane(float height, Vector3 planeNormalDirection, Matrix currentViewMatrix, bool clipSide)
         {
             planeNormalDirection.Normalize();
             Vector4 planeCoeffs = new Vector4(planeNormalDirection, height);
             if (clipSide)
                 planeCoeffs *= -1;
 
             Matrix worldViewProjection = currentViewMatrix * projectionMatrix;
             Matrix inverseWorldViewProjection = Matrix.Invert(worldViewProjection);
             inverseWorldViewProjection = Matrix.Transpose(inverseWorldViewProjection);
 
             planeCoeffs = Vector4.Transform(planeCoeffs, inverseWorldViewProjection);
             Plane finalPlane = new Plane(planeCoeffs);
 
             return finalPlane;
         }
 
         private void DrawRefractionMap()
         {
             Plane refractionPlane = CreatePlane(waterHeight + 1.5f, new Vector3(0, -1, 0), viewMatrix, false);
             device.ClipPlanes[0].Plane = refractionPlane;
             device.ClipPlanes[0].IsEnabled = true;
             device.SetRenderTarget(0, refractionRenderTarget);
             device.Clear(ClearOptions.Target | ClearOptions.DepthBuffer, Color.Black, 1.0f, 0);
             DrawTerrain(viewMatrix);
             device.ClipPlanes[0].IsEnabled = false;
 
             device.SetRenderTarget(0, null);
             refractionMap = refractionRenderTarget.GetTexture();
         }
 
         private void DrawReflectionMap()
         {
             Plane reflectionPlane = CreatePlane(waterHeight - 0.5f, new Vector3(0, -1, 0), reflectionViewMatrix, true);
             device.ClipPlanes[0].Plane = reflectionPlane;
             device.ClipPlanes[0].IsEnabled = true;
             device.SetRenderTarget(0, reflectionRenderTarget);
             device.Clear(ClearOptions.Target | ClearOptions.DepthBuffer, Color.Black, 1.0f, 0);
             DrawSkyDome(reflectionViewMatrix);
             DrawTerrain(reflectionViewMatrix);
             DrawBillboards(reflectionViewMatrix);
             device.ClipPlanes[0].IsEnabled = false;
 
             device.SetRenderTarget(0, null);
             reflectionMap = reflectionRenderTarget.GetTexture();
         }
 
         private void DrawWater(float time)
         {
             effect.CurrentTechnique = effect.Techniques["Water"];
             Matrix worldMatrix = Matrix.Identity;
             effect.Parameters["xWorld"].SetValue(worldMatrix);
             effect.Parameters["xView"].SetValue(viewMatrix);
             effect.Parameters["xReflectionView"].SetValue(reflectionViewMatrix);
             effect.Parameters["xProjection"].SetValue(projectionMatrix);
             effect.Parameters["xReflectionMap"].SetValue(reflectionMap);
             effect.Parameters["xRefractionMap"].SetValue(refractionMap);
             effect.Parameters["xWaterBumpMap"].SetValue(waterBumpMap);
             effect.Parameters["xWaveLength"].SetValue(0.1f);
             effect.Parameters["xWaveHeight"].SetValue(0.3f);
             effect.Parameters["xCamPos"].SetValue(cameraPosition);
             effect.Parameters["xTime"].SetValue(time);
             effect.Parameters["xWindForce"].SetValue(0.002f);
             effect.Parameters["xWindDirection"].SetValue(windDirection);
 
             effect.Begin();
             foreach (EffectPass pass in effect.CurrentTechnique.Passes)
             {
                 pass.Begin();
 
                 device.Vertices[0].SetSource(waterVertexBuffer, 0, VertexPositionTexture.SizeInBytes);
                 device.VertexDeclaration = waterVertexDeclaration;
                 int noVertices = waterVertexBuffer.SizeInBytes / VertexPositionTexture.SizeInBytes;
                 device.DrawPrimitives(PrimitiveType.TriangleList, 0, noVertices / 3);
 
                 pass.End();
             }
             effect.End();
         }
 
         private void DrawBillboards(Matrix currentViewMatrix)
         {
             bbEffect.CurrentTechnique = bbEffect.Techniques["CylBillboard"];
             bbEffect.Parameters["xWorld"].SetValue(Matrix.Identity);
             bbEffect.Parameters["xView"].SetValue(currentViewMatrix);
             bbEffect.Parameters["xProjection"].SetValue(projectionMatrix);
             bbEffect.Parameters["xCamPos"].SetValue(cameraPosition);
             bbEffect.Parameters["xAllowedRotDir"].SetValue(new Vector3(0, 1, 0));
             bbEffect.Parameters["xBillboardTexture"].SetValue(treeTexture);
 
             bbEffect.Begin();
 
             device.Vertices[0].SetSource(treeVertexBuffer, 0, VertexPositionTexture.SizeInBytes);
             device.VertexDeclaration = treeVertexDeclaration;
             int noVertices = treeVertexBuffer.SizeInBytes / VertexPositionTexture.SizeInBytes;
             int noTriangles = noVertices / 3;
             {
                 device.RenderState.AlphaTestEnable = true;
                 device.RenderState.AlphaFunction = CompareFunction.GreaterEqual;
                 device.RenderState.ReferenceAlpha = 200;
 
                 bbEffect.CurrentTechnique.Passes[0].Begin();
                 device.DrawPrimitives(PrimitiveType.TriangleList, 0, noTriangles);
                 bbEffect.CurrentTechnique.Passes[0].End();
             }
 
             {
                 device.RenderState.DepthBufferWriteEnable = false;
 
                 device.RenderState.AlphaBlendEnable = true;
                 device.RenderState.SourceBlend = Blend.SourceAlpha;
                 device.RenderState.DestinationBlend = Blend.InverseSourceAlpha;
 
                 device.RenderState.AlphaTestEnable = true;
                 device.RenderState.AlphaFunction = CompareFunction.Less;
                 device.RenderState.ReferenceAlpha = 200;
 
                 bbEffect.CurrentTechnique.Passes[0].Begin();
                 device.DrawPrimitives(PrimitiveType.TriangleList, 0, noTriangles);
                 bbEffect.CurrentTechnique.Passes[0].End();
             }
             
             device.RenderState.AlphaBlendEnable = false;
             device.RenderState.DepthBufferWriteEnable = true;
             device.RenderState.AlphaTestEnable = false;            
 
             bbEffect.End();
         }
 
         private void GeneratePerlinNoise(float time)
         {
             device.SetRenderTarget(0, cloudsRenderTarget);
             device.Clear(ClearOptions.Target | ClearOptions.DepthBuffer, Color.Black, 1.0f, 0);
                         
             effect.CurrentTechnique = effect.Techniques["PerlinNoise"];
             effect.Parameters["xTexture"].SetValue(cloudStaticMap);
             effect.Parameters["xOvercast"].SetValue(1.1f);
             effect.Parameters["xTime"].SetValue(time/1000.0f);
             effect.Begin();
             foreach (EffectPass pass in effect.CurrentTechnique.Passes)
             {
                 pass.Begin();
 
                 device.VertexDeclaration = fullScreenVertexDeclaration;
                 device.DrawUserPrimitives(PrimitiveType.TriangleStrip, fullScreenVertices, 0, 2);
 
                 pass.End();
             }
             effect.End();
 
             device.SetRenderTarget(0, null);
             cloudMap = cloudsRenderTarget.GetTexture();
         }
     }
 }

完整的HLSL代码:

//----------------------------------------------------
//--                                                --
//--             www.riemers.net                 --
//--         Series 4: Advanced terrain             --
//--                 Shader code                    --
//--                                                --
//----------------------------------------------------

//------- Constants --------
float4x4 xView;
float4x4 xReflectionView;
float4x4 xProjection;
float4x4 xWorld;
float3 xLightDirection;
float xAmbient;
bool xEnableLighting;
float xWaveLength;
float xWaveHeight;
float3 xCamPos;
float xTime;
float xWindForce;
float3 xWindDirection;
float xOvercast;

//------- Texture Samplers --------
Texture xTexture;

sampler TextureSampler = sampler_state { texture = <xTexture> ; magfilter = LINEAR; minfilter = LINEAR; mipfilter=LINEAR; AddressU = mirror; AddressV = mirror;};Texture xTexture0;

sampler TextureSampler0 = sampler_state { texture = <xTexture0> ; magfilter = LINEAR; minfilter = LINEAR; mipfilter=LINEAR; AddressU = wrap; AddressV = wrap;};Texture xTexture1;

sampler TextureSampler1 = sampler_state { texture = <xTexture1> ; magfilter = LINEAR; minfilter = LINEAR; mipfilter=LINEAR; AddressU = wrap; AddressV = wrap;};Texture xTexture2;

sampler TextureSampler2 = sampler_state { texture = <xTexture2> ; magfilter = LINEAR; minfilter = LINEAR; mipfilter=LINEAR; AddressU = mirror; AddressV = mirror;};Texture xTexture3;

sampler TextureSampler3 = sampler_state { texture = <xTexture3> ; magfilter = LINEAR; minfilter = LINEAR; mipfilter=LINEAR; AddressU = mirror; AddressV = mirror;};Texture xReflectionMap;

sampler ReflectionSampler = sampler_state { texture = <xReflectionMap> ; magfilter = LINEAR; minfilter = LINEAR; mipfilter=LINEAR; AddressU = mirror; AddressV = mirror;};Texture xRefractionMap;

sampler RefractionSampler = sampler_state { texture = <xRefractionMap> ; magfilter = LINEAR; minfilter = LINEAR; mipfilter=LINEAR; AddressU = mirror; AddressV = mirror;};Texture xWaterBumpMap;

sampler WaterBumpMapSampler = sampler_state { texture = <xWaterBumpMap> ; magfilter = LINEAR; minfilter = LINEAR; mipfilter=LINEAR; AddressU = mirror; AddressV = mirror;};
//------- Technique: Textured --------
struct TVertexToPixel
{
    float4 Position     : POSITION;    
    float4 Color        : COLOR0;
    float LightingFactor: TEXCOORD0;
    float2 TextureCoords: TEXCOORD1;
};

struct TPixelToFrame
{
    float4 Color : COLOR0;
};

TVertexToPixel TexturedVS( float4 inPos : POSITION, float3 inNormal: NORMAL, float2 inTexCoords: TEXCOORD0)
{    
    TVertexToPixel Output = (TVertexToPixel)0;
    float4x4 preViewProjection = mul (xView, xProjection);
    float4x4 preWorldViewProjection = mul (xWorld, preViewProjection);
    
    Output.Position = mul(inPos, preWorldViewProjection);    
    Output.TextureCoords = inTexCoords;
    
    float3 Normal = normalize(mul(normalize(inNormal), xWorld));    
    Output.LightingFactor = 1;
    if (xEnableLighting)
        Output.LightingFactor = saturate(dot(Normal, -xLightDirection));
    
    return Output;    
}

TPixelToFrame TexturedPS(TVertexToPixel PSIn)
{
    TPixelToFrame Output = (TPixelToFrame)0;        
    
    Output.Color = tex2D(TextureSampler, PSIn.TextureCoords);
    Output.Color.rgb *= saturate(PSIn.LightingFactor + xAmbient);

    return Output;
}

technique Textured_2_0
{
    pass Pass0
    {
        VertexShader = compile vs_2_0 TexturedVS();
        PixelShader = compile ps_2_0 TexturedPS();
    }
}

technique Textured
{
    pass Pass0
    {
        VertexShader = compile vs_1_1 TexturedVS();
        PixelShader = compile ps_1_1 TexturedPS();
    }
}

//------- Technique: Multitextured --------
struct MTVertexToPixel
{
    float4 Position         : POSITION;    
    float4 Color            : COLOR0;
    float3 Normal            : TEXCOORD0;
    float2 TextureCoords    : TEXCOORD1;
    float4 LightDirection    : TEXCOORD2;
    float4 TextureWeights    : TEXCOORD3;
    float Depth                : TEXCOORD4;
};

struct MTPixelToFrame
{
    float4 Color : COLOR0;
};

MTVertexToPixel MultiTexturedVS( float4 inPos : POSITION, float3 inNormal: NORMAL, float2 inTexCoords: TEXCOORD0, float4 inTexWeights: TEXCOORD1)
{    
    MTVertexToPixel Output = (MTVertexToPixel)0;
    float4x4 preViewProjection = mul (xView, xProjection);
    float4x4 preWorldViewProjection = mul (xWorld, preViewProjection);
    
    Output.Position = mul(inPos, preWorldViewProjection);
    Output.Normal = mul(normalize(inNormal), xWorld);
    Output.TextureCoords = inTexCoords;
    Output.LightDirection.xyz = -xLightDirection;
    Output.LightDirection.w = 1;    
    Output.TextureWeights = inTexWeights;
    Output.Depth = Output.Position.z/Output.Position.w;
    
    return Output;    
}

MTPixelToFrame MultiTexturedPS(MTVertexToPixel PSIn)
{
    MTPixelToFrame Output = (MTPixelToFrame)0;        
    
    float lightingFactor = 1;
    if (xEnableLighting)
        lightingFactor = saturate(saturate(dot(PSIn.Normal, PSIn.LightDirection)) + xAmbient);
        
    float blendDistance = 0.99f;
    float blendWidth = 0.005f;
    float blendFactor = clamp((PSIn.Depth-blendDistance)/blendWidth, 0, 1);
        
    float4 farColor;
    farColor = tex2D(TextureSampler0, PSIn.TextureCoords)*PSIn.TextureWeights.x;
    farColor += tex2D(TextureSampler1, PSIn.TextureCoords)*PSIn.TextureWeights.y;
    farColor += tex2D(TextureSampler2, PSIn.TextureCoords)*PSIn.TextureWeights.z;
    farColor += tex2D(TextureSampler3, PSIn.TextureCoords)*PSIn.TextureWeights.w;
    
    float4 nearColor;
    float2 nearTextureCoords = PSIn.TextureCoords*3;
    nearColor = tex2D(TextureSampler0, nearTextureCoords)*PSIn.TextureWeights.x;
    nearColor += tex2D(TextureSampler1, nearTextureCoords)*PSIn.TextureWeights.y;
    nearColor += tex2D(TextureSampler2, nearTextureCoords)*PSIn.TextureWeights.z;
    nearColor += tex2D(TextureSampler3, nearTextureCoords)*PSIn.TextureWeights.w;

    Output.Color = lerp(nearColor, farColor, blendFactor);
    Output.Color *= lightingFactor;
    
    return Output;
}

technique MultiTextured
{
    pass Pass0
    {
        VertexShader = compile vs_1_1 MultiTexturedVS();
        PixelShader = compile ps_2_0 MultiTexturedPS();
    }
}

//------- Technique: Water --------
struct WVertexToPixel
{
    float4 Position                 : POSITION;
    float4 ReflectionMapSamplingPos    : TEXCOORD1;
    float2 BumpMapSamplingPos        : TEXCOORD2;
    float4 RefractionMapSamplingPos : TEXCOORD3;
    float4 Position3D                : TEXCOORD4;
};

struct WPixelToFrame
{
    float4 Color : COLOR0;
};

WVertexToPixel WaterVS(float4 inPos : POSITION, float2 inTex: TEXCOORD)
{    
    WVertexToPixel Output = (WVertexToPixel)0;

    float4x4 preViewProjection = mul (xView, xProjection);
    float4x4 preWorldViewProjection = mul (xWorld, preViewProjection);
    float4x4 preReflectionViewProjection = mul (xReflectionView, xProjection);
    float4x4 preWorldReflectionViewProjection = mul (xWorld, preReflectionViewProjection);

    Output.Position = mul(inPos, preWorldViewProjection);
    Output.ReflectionMapSamplingPos = mul(inPos, preWorldReflectionViewProjection);    
    Output.RefractionMapSamplingPos = mul(inPos, preWorldViewProjection);
    Output.Position3D = mul(inPos, xWorld);        
    
    float3 windDir = normalize(xWindDirection);    
    float3 perpDir = cross(xWindDirection, float3(0,1,0));
    float ydot = dot(inTex, xWindDirection.xz);
    float xdot = dot(inTex, perpDir.xz);
    float2 moveVector = float2(xdot, ydot);
    moveVector.y += xTime*xWindForce;    
    Output.BumpMapSamplingPos = moveVector/xWaveLength;    

    
    return Output;
}

WPixelToFrame WaterPS(WVertexToPixel PSIn)
{
    WPixelToFrame Output = (WPixelToFrame)0;        
    
    float4 bumpColor = tex2D(WaterBumpMapSampler, PSIn.BumpMapSamplingPos);
    float2 perturbation = xWaveHeight*(bumpColor.rg - 0.5f)*2.0f;
    
    float2 ProjectedTexCoords;
    ProjectedTexCoords.x = PSIn.ReflectionMapSamplingPos.x/PSIn.ReflectionMapSamplingPos.w/2.0f + 0.5f;
    ProjectedTexCoords.y = -PSIn.ReflectionMapSamplingPos.y/PSIn.ReflectionMapSamplingPos.w/2.0f + 0.5f;        
    float2 perturbatedTexCoords = ProjectedTexCoords + perturbation;
    float4 reflectiveColor = tex2D(ReflectionSampler, perturbatedTexCoords);
    
    float2 ProjectedRefrTexCoords;
    ProjectedRefrTexCoords.x = PSIn.RefractionMapSamplingPos.x/PSIn.RefractionMapSamplingPos.w/2.0f + 0.5f;
    ProjectedRefrTexCoords.y = -PSIn.RefractionMapSamplingPos.y/PSIn.RefractionMapSamplingPos.w/2.0f + 0.5f;    
    float2 perturbatedRefrTexCoords = ProjectedRefrTexCoords + perturbation;    
    float4 refractiveColor = tex2D(RefractionSampler, perturbatedRefrTexCoords);
    
    float3 eyeVector = normalize(xCamPos - PSIn.Position3D);
    float3 normalVector = (bumpColor.rbg-0.5f)*2.0f;
    
    float fresnelTerm = dot(eyeVector, normalVector);    
    float4 combinedColor = lerp(reflectiveColor, refractiveColor, fresnelTerm);
    
    float4 dullColor = float4(0.3f, 0.3f, 0.5f, 1.0f);
    
    Output.Color = lerp(combinedColor, dullColor, 0.2f);    
    
    float3 reflectionVector = -reflect(xLightDirection, normalVector);
    float specular = dot(normalize(reflectionVector), normalize(eyeVector));
    specular = pow(specular, 256);        
    Output.Color.rgb += specular;
    
    return Output;
}

technique Water
{
    pass Pass0
    {
        VertexShader = compile vs_1_1 WaterVS();
        PixelShader = compile ps_2_0 WaterPS();
    }
}

//------- Technique: PerlinNoise --------
struct PNVertexToPixel
{    
    float4 Position         : POSITION;
    float2 TextureCoords    : TEXCOORD0;
};

struct PNPixelToFrame
{
    float4 Color : COLOR0;
};

PNVertexToPixel PerlinVS(float4 inPos : POSITION, float2 inTexCoords: TEXCOORD)
{    
    PNVertexToPixel Output = (PNVertexToPixel)0;
    
    Output.Position = inPos;
    Output.TextureCoords = inTexCoords;
    
    return Output;    
}

PNPixelToFrame PerlinPS(PNVertexToPixel PSIn)
{
    PNPixelToFrame Output = (PNPixelToFrame)0;    
    
    float2 move = float2(0,1);
    float4 perlin = tex2D(TextureSampler, (PSIn.TextureCoords)+xTime*move)/2;
    perlin += tex2D(TextureSampler, (PSIn.TextureCoords)*2+xTime*move)/4;
    perlin += tex2D(TextureSampler, (PSIn.TextureCoords)*4+xTime*move)/8;
    perlin += tex2D(TextureSampler, (PSIn.TextureCoords)*8+xTime*move)/16;
    perlin += tex2D(TextureSampler, (PSIn.TextureCoords)*16+xTime*move)/32;
    perlin += tex2D(TextureSampler, (PSIn.TextureCoords)*32+xTime*move)/32;    
    
    Output.Color.rgb = 1.0f-pow(perlin.r, xOvercast)*2.0f;
    Output.Color.a =1;

    return Output;
}

technique PerlinNoise
{
    pass Pass0
    {
        VertexShader = compile vs_1_1 PerlinVS();
        PixelShader = compile ps_2_0 PerlinPS();
    }
}


 //------- Technique: SkyDome --------
 struct SDVertexToPixel
 {    
     float4 Position         : POSITION;
     float2 TextureCoords    : TEXCOORD0;
     float4 ObjectPosition    : TEXCOORD1;
 };
 
 struct SDPixelToFrame
 {
     float4 Color : COLOR0;
 };
 
 SDVertexToPixel SkyDomeVS( float4 inPos : POSITION, float2 inTexCoords: TEXCOORD0)
 {    
     SDVertexToPixel Output = (SDVertexToPixel)0;
     float4x4 preViewProjection = mul (xView, xProjection);
     float4x4 preWorldViewProjection = mul (xWorld, preViewProjection);
     
     Output.Position = mul(inPos, preWorldViewProjection);
     Output.TextureCoords = inTexCoords;
     Output.ObjectPosition = inPos;
     
     return Output;    
 }
 
 SDPixelToFrame SkyDomePS(SDVertexToPixel PSIn)
 {
     SDPixelToFrame Output = (SDPixelToFrame)0;        
 
     float4 topColor = float4(0.3f, 0.3f, 0.8f, 1);    
     float4 bottomColor = 1;    
     
     float4 baseColor = lerp(bottomColor, topColor, saturate((PSIn.ObjectPosition.y)/0.4f));
     float4 cloudValue = tex2D(TextureSampler, PSIn.TextureCoords).r;
     
     Output.Color = lerp(baseColor,1, cloudValue);        
 
     return Output;
 }
 
 technique SkyDome
 {
     pass Pass0
     {
         VertexShader = compile vs_1_1 SkyDomeVS();
         PixelShader = compile ps_2_0 SkyDomePS();
     }
 }

发布时间:2009/12/29 10:28:45  阅读次数:5934

2006 - 2024,推荐分辨率1024*768以上,推荐浏览器Chrome、Edge等现代浏览器,截止2021年12月5日的访问次数:1872万9823 站长邮箱

沪ICP备18037240号-1

沪公网安备 31011002002865号